These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16666290)

  • 1. Tonoplast stability and survival of isolated vacuoles in different buffers.
    De Leon JL; Daie J; Wyse R
    Plant Physiol; 1988 Oct; 88(2):251-4. PubMed ID: 16666290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose uptake into vacuoles of sugarcane suspension cells.
    Preisser J; Komor E
    Planta; 1991 Dec; 186(1):109-14. PubMed ID: 24186582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of the tonoplast amino-acid carrier into liposomes : Evidence for an ATP-regulated carrier in different species.
    Thume M; Dietz KJ
    Planta; 1991 Nov; 185(4):569-75. PubMed ID: 24186536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+.
    Dietz KJ; Lang M; Schönrock M; Zink C
    Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity.
    Rentsch D; Martinoia E
    Planta; 1991 Jul; 184(4):532-7. PubMed ID: 24194244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles.
    Martinoia E; Thume M; Vogt E; Rentsch D; Dietz KJ
    Plant Physiol; 1991 Oct; 97(2):644-50. PubMed ID: 16668447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles.
    Ramos MS; Abele R; Nagy R; Grotemeyer MS; Tampé R; Rentsch D; Martinoia E
    J Exp Bot; 2011 Apr; 62(7):2403-10. PubMed ID: 21282327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further Evidence for Stachyose and Sucrose/H+ Antiporters on the Tonoplast of Japanese Artichoke (Stachys sieboldii) Tubers.
    Greutert H; Keller F
    Plant Physiol; 1993 Apr; 101(4):1317-1322. PubMed ID: 12231787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of phenylalanine into vacuoles isolated from barley mesophyll protoplasts.
    Homeyer U; Schultz G
    Planta; 1988 Dec; 176(3):378-82. PubMed ID: 24220866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for a sugar transport mechanism in isolated vacuoles.
    Guy M; Reinhold L; Michaeli D
    Plant Physiol; 1979 Jul; 64(1):61-4. PubMed ID: 16660915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of anions in isolated barley vacuoles : I. Permeability to anions and evidence for a cl-uptake system.
    Martinoia E; Schramm MJ; Kaiser G; Kaiser WM; Heber U
    Plant Physiol; 1986 Apr; 80(4):895-901. PubMed ID: 16664738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms.
    Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M
    Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential compartmentation of gibberellin a(1) and its metabolites in vacuoles of cowpea and barley leaves.
    Garcia-Martinez JL
    Plant Physiol; 1981 Oct; 68(4):865-7. PubMed ID: 16662014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.