These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16666332)

  • 21. A new set of regulatory molecules in plants: A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles.
    Scherer GF; Martiny-Baron G; Stoffel B
    Planta; 1988 Aug; 175(2):241-53. PubMed ID: 24221719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles.
    Rajendran VM; Barry JA; Kleinman JG; Ramaswamy K
    J Biol Chem; 1987 Nov; 262(31):14974-7. PubMed ID: 2822708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myocardial amino acid transport by canine sarcolemma vesicles.
    Young LH; Zaret BL; Barrett EJ
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1070-6. PubMed ID: 3035946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton Transport in Plasma Membrane and Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue : A Comparative Study of Ion Effects on DeltapH and DeltaPsi.
    Giannini JL; Briskin DP
    Plant Physiol; 1987 Jul; 84(3):613-8. PubMed ID: 16665490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium Transport in Sealed Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue : II. Characterization of Ca Uptake into Plasma Membrane Vesicles.
    Giannini JL; Ruiz-Cristin J; Briskin DP
    Plant Physiol; 1987 Dec; 85(4):1137-42. PubMed ID: 16665817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinction between Ca(2+) pump and Ca(2+)/H(+) antiport activities in synaptic vesicles of sheep brain cortex.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Neurochem Int; 2000 Oct; 37(4):387-96. PubMed ID: 10825579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sucrose-dependent H(+) transport in plasma-membrane vesicles isolated from sugarbeet leaves (Beta vulgaris L.) : Evidence in support of the H(+)-symport model for sucrose transport.
    Slone JH; Buckhout TJ
    Planta; 1991 Mar; 183(4):584-9. PubMed ID: 24193852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of solute/proton cotransport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues.
    Williams LE; Nelson SJ; Hall JL
    Planta; 1992 Mar; 186(4):541-50. PubMed ID: 24186784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sucrose transport into plasma membrane vesicles from tobacco leaves by H+ symport or counter exchange does not display a linear component.
    Borstlap AC; Schuurmans JA
    J Membr Biol; 2004 Mar; 198(1):31-42. PubMed ID: 15209095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.
    Kaczorowski G; Shaw L; Laura R; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid transport in plasma-membrane vesicles from rat liver. Characterization of L-alanine transport.
    Sips HJ; Van Amelsvoort JM; Van Dam K
    Eur J Biochem; 1980 Apr; 105(2):217-24. PubMed ID: 7379782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J; Simonis W
    J Bacteriol; 1982 Jul; 151(1):229-36. PubMed ID: 6806240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles.
    Kaczorowski G; Shaw L; F-entes M; Walsh C
    J Biol Chem; 1975 Apr; 250(8):2855-65. PubMed ID: 1091641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ohsumi Y; Anraku Y
    J Biol Chem; 1981 Mar; 256(5):2079-82. PubMed ID: 6450764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers.
    Lever JE; Kennedy BG; Vasan R
    Arch Biochem Biophys; 1984 Nov; 234(2):330-40. PubMed ID: 6093696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutral amino acid symport in larval Manduca sexta midgut brush-border membrane vesicles deduced from cation-dependent uptake of leucine, alanine, and phenylalanine.
    Hennigan BB; Wolfersberger MG; Harvey WR
    Biochim Biophys Acta; 1993 Jun; 1148(2):216-22. PubMed ID: 8504116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Extracellular Components from Colletotrichum lindemuthianum on Membrane Transport in Vesicles Isolated from Bean Hypocotyl.
    Rogers KR; Anderson AJ
    Plant Physiol; 1987 Jun; 84(2):428-32. PubMed ID: 16665456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.