These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16666379)

  • 1. Characterization of the na-requirement in cyanobacterial photosynthesis.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1988 Nov; 88(3):757-63. PubMed ID: 16666379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for Na-Independent HCO(3) Uptake by the Cyanobacterium Synechococcus leopoliensis.
    Espie GS; Canvin DT
    Plant Physiol; 1987 May; 84(1):125-30. PubMed ID: 16665385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-Stimulation of Photosynthesis in the Cyanobacterium Synechococcus UTEX 625 Grown on High Levels of Inorganic Carbon.
    Miller AG; Canvin DT
    Plant Physiol; 1987 May; 84(1):118-24. PubMed ID: 16665383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship between Ribulose Bisphosphate Concentration, Dissolved Inorganic Carbon (DIC) Transport and DIC-Limited Photosynthesis in the Cyanobacterium Synechococcus leopoliensis Grown at Different Concentrations of Inorganic Carbon.
    Mayo WP; Elrifi IR; Turpin DH
    Plant Physiol; 1989 Jun; 90(2):720-7. PubMed ID: 16666834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na-Independent HCO(3) Transport and Accumulation in the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Kandasamy RA
    Plant Physiol; 1992 Feb; 98(2):560-8. PubMed ID: 16668677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic Adaptation by Synechococcus leopoliensis in Response to Exogenous Dissolved Inorganic Carbon.
    Mayo WP; Williams TG; Birch DG; Turpin DH
    Plant Physiol; 1986 Apr; 80(4):1038-40. PubMed ID: 16664715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Transport of CO(2) by the Cyanobacterium Synechococcus UTEX 625 : Measurement by Mass Spectrometry.
    Miller AG; Espie GS; Canvin DT
    Plant Physiol; 1988 Mar; 86(3):677-83. PubMed ID: 16665969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active transport of CO(2) and bicarbonate is induced in response to external CO(2) concentration in the green alga Chlorella kessleri.
    Bozzo GG; Colman B; Matsuda Y
    J Exp Bot; 2000 Aug; 51(349):1341-8. PubMed ID: 10944146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Affinity Transport of CO(2) in the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1991 Nov; 97(3):943-53. PubMed ID: 16668535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and Photosynthesis of the Cyanobacterium Synechococcus leopoliensis in HCO(3)-Limited Chemostats.
    Miller AG; Turpin DH; Canvin DT
    Plant Physiol; 1984 Aug; 75(4):1064-70. PubMed ID: 16663735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Systems for Concentrating CO(2) and Bicarbonate during Photosynthesis by Scenedesmus.
    Thielmann J; Tolbert NE; Goyal A; Senger H
    Plant Physiol; 1990 Mar; 92(3):622-9. PubMed ID: 16667325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Transport of CO(2) and HCO(3) by the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Miller AG; Birch DG; Canvin DT
    Plant Physiol; 1988 Jul; 87(3):551-4. PubMed ID: 16666182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorespiration and Internal CO(2) Accumulation in Chara corallina as Inferred from the Influence of DIC and O(2) on Photosynthesis.
    Brechignac F; Lucas WJ
    Plant Physiol; 1987 Jan; 83(1):163-9. PubMed ID: 16665195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for HCO(3) Transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis.
    Miller AG; Colman B
    Plant Physiol; 1980 Feb; 65(2):397-402. PubMed ID: 16661199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and Reversible Inhibition of Active CO(2) Transport by Hydrogen Sulfide in a Cyanobacterium.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1989 Sep; 91(1):387-94. PubMed ID: 16667030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for K+-dependent HCO3- utilization in the marine diatom Phaeodactylum tricornutum.
    Chen X; Qiu CE; Shao JZ
    Plant Physiol; 2006 Jun; 141(2):731-6. PubMed ID: 16632589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quenching of Chlorophyll a Fluorescence in Response to Na+-Dependent HCO3- Transport-Mediated Accumulation of Inorganic Carbon in the Cyanobacterium Synechococcus UTEX 625.
    Crotty CM; Tyrrell PN; Espie GS
    Plant Physiol; 1994 Feb; 104(2):785-791. PubMed ID: 12232126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic Carbon Uptake by Chlamydomonas reinhardtii.
    Moroney JV; Tolbert NE
    Plant Physiol; 1985 Feb; 77(2):253-8. PubMed ID: 16664038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic Carbon Uptake during Photosynthesis : II. Uptake by Isolated Asparagus Mesophyll Cells during Isotopic Disequilibrium.
    Espie GS; Owttrim GW; Colman B
    Plant Physiol; 1986 Apr; 80(4):870-6. PubMed ID: 16664734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic kinetics determine the outcome of competition for dissolved inorganic carbon by freshwater microalgae: implications for acidified lakes.
    Williams TG; Turpin DH
    Oecologia; 1987 Sep; 73(2):307-311. PubMed ID: 28312303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.