These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 16666386)
1. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Suttle JC Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386 [TBL] [Abstract][Full Text] [Related]
2. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding. Suttle JC Plant Physiol; 1991 Jul; 96(3):875-80. PubMed ID: 16668268 [TBL] [Abstract][Full Text] [Related]
3. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid. Johnson CF; Morris DA Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925 [TBL] [Abstract][Full Text] [Related]
4. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.). Johnson CF; Morris DA Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754 [TBL] [Abstract][Full Text] [Related]
5. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L. Jones JF; Kende H Planta; 1979 Oct; 146(5):649-56. PubMed ID: 24318341 [TBL] [Abstract][Full Text] [Related]
6. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665 [TBL] [Abstract][Full Text] [Related]
7. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312 [TBL] [Abstract][Full Text] [Related]
8. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato. Nongmaithem S; Devulapalli S; Sreelakshmi Y; Sharma R Plant Sci; 2020 Feb; 291():110358. PubMed ID: 31928666 [TBL] [Abstract][Full Text] [Related]
9. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Morris DA; Johnson CF Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683 [TBL] [Abstract][Full Text] [Related]
10. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron. Suttle JC Plant Physiol; 1988 Jan; 86(1):241-5. PubMed ID: 16665874 [TBL] [Abstract][Full Text] [Related]
11. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Faulkner IJ; Rubery PH Planta; 1992 Mar; 186(4):618-25. PubMed ID: 24186794 [TBL] [Abstract][Full Text] [Related]
12. Ethylene-induced leaf abscission in cotton seedlings : the physiological bases for age-dependent differences in sensitivity. Suttle JC; Hultstrand JF Plant Physiol; 1991 Jan; 95(1):29-33. PubMed ID: 16667967 [TBL] [Abstract][Full Text] [Related]
13. Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots. Sundberg B; Tuominen H; Little C Plant Physiol; 1994 Oct; 106(2):469-476. PubMed ID: 12232343 [TBL] [Abstract][Full Text] [Related]
14. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin. Haga K; Iino M Plant Physiol; 1998 Aug; 117(4):1473-86. PubMed ID: 9701602 [TBL] [Abstract][Full Text] [Related]
15. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid. Sabater M; Rubery PH Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714 [TBL] [Abstract][Full Text] [Related]
16. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls. Nicolás JI; Acosta M; Sánchez-Bravo J J Plant Physiol; 2007 Jul; 164(7):851-60. PubMed ID: 16904231 [TBL] [Abstract][Full Text] [Related]
17. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments. Morris DA; Johnson CF Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926 [TBL] [Abstract][Full Text] [Related]
18. Identification and Characterization of Linoleic Acid as an Endogenous Modulator of in Vitro N-1-Naphthylphthalamic Acid Binding. Suttle JC Plant Physiol; 1997 Feb; 113(2):519-525. PubMed ID: 12223622 [TBL] [Abstract][Full Text] [Related]
19. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta. Dibb-Fuller JE; Morris DA Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661 [TBL] [Abstract][Full Text] [Related]
20. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Rashotte AM; Brady SR; Reed RC; Ante SJ; Muday GK Plant Physiol; 2000 Feb; 122(2):481-90. PubMed ID: 10677441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]