BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16666386)

  • 1. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls.
    Suttle JC
    Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding.
    Suttle JC
    Plant Physiol; 1991 Jul; 96(3):875-80. PubMed ID: 16668268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid.
    Johnson CF; Morris DA
    Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L.
    Jones JF; Kende H
    Planta; 1979 Oct; 146(5):649-56. PubMed ID: 24318341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato.
    Nongmaithem S; Devulapalli S; Sreelakshmi Y; Sharma R
    Plant Sci; 2020 Feb; 291():110358. PubMed ID: 31928666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron.
    Suttle JC
    Plant Physiol; 1988 Jan; 86(1):241-5. PubMed ID: 16665874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles.
    Faulkner IJ; Rubery PH
    Planta; 1992 Mar; 186(4):618-25. PubMed ID: 24186794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene-induced leaf abscission in cotton seedlings : the physiological bases for age-dependent differences in sensitivity.
    Suttle JC; Hultstrand JF
    Plant Physiol; 1991 Jan; 95(1):29-33. PubMed ID: 16667967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots.
    Sundberg B; Tuominen H; Little C
    Plant Physiol; 1994 Oct; 106(2):469-476. PubMed ID: 12232343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin.
    Haga K; Iino M
    Plant Physiol; 1998 Aug; 117(4):1473-86. PubMed ID: 9701602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid.
    Sabater M; Rubery PH
    Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls.
    Nicolás JI; Acosta M; Sánchez-Bravo J
    J Plant Physiol; 2007 Jul; 164(7):851-60. PubMed ID: 16904231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of Linoleic Acid as an Endogenous Modulator of in Vitro N-1-Naphthylphthalamic Acid Binding.
    Suttle JC
    Plant Physiol; 1997 Feb; 113(2):519-525. PubMed ID: 12223622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta.
    Dibb-Fuller JE; Morris DA
    Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis.
    Rashotte AM; Brady SR; Reed RC; Ante SJ; Muday GK
    Plant Physiol; 2000 Feb; 122(2):481-90. PubMed ID: 10677441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.