These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16666479)

  • 21. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons.
    Rosche E; Blackmore D; Tegeder M; Richardson T; Schroeder H; Higgins TJ; Frommer WB; Offler CE; Patrick JW
    Plant J; 2002 Apr; 30(2):165-75. PubMed ID: 12000453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Storage Protein Composition of Soybean Cotyledons Grown In Vitro in Media of Various Sulfate Concentrations in the Presence and Absence of Exogenous l-Methionine.
    Holowach LP; Thompson JF; Madison JT
    Plant Physiol; 1984 Mar; 74(3):584-9. PubMed ID: 16663464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A 62-kD sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport.
    Grimes HD; Overvoorde PJ; Ripp K; Franceschi VR; Hitz WD
    Plant Cell; 1992 Dec; 4(12):1561-74. PubMed ID: 1467654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves : estimation by alternate substrate utilization.
    Schmalstig JG; Hitz WD
    Plant Physiol; 1987 Oct; 85(2):407-12. PubMed ID: 16665711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo biosynthesis of clathrin and other coated vesicle proteins from rat liver.
    Pierce LR; Zurzolo C; Edelhoch H
    J Cell Biochem; 1986; 31(2):121-33. PubMed ID: 2874148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) Leaves.
    Bush DR
    Plant Physiol; 1989 Apr; 89(4):1318-23. PubMed ID: 16666703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of azidophospholipids and labeling of lysophosphatidylcholine acyltransferase from developing soybean cotyledons.
    Tumaney AW; Rajasekharan R
    Biochim Biophys Acta; 1999 Jul; 1439(1):47-56. PubMed ID: 10395964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of sucrose transport into protoplasts from developing soybean cotyledons.
    Lin W
    Plant Physiol; 1985 May; 78(1):41-5. PubMed ID: 16664205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of 33-kD and 60-kD Peroxidases during Ethylene-Induced Senescence of Cucumber Cotyledons.
    Abeles FB; Dunn LJ; Morgens P; Callahan A; Dinterman RE; Schmidt J
    Plant Physiol; 1988 Jul; 87(3):609-15. PubMed ID: 16666194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar transport in isolated corn root protoplasts.
    Lin W; Schmitt MR; Hitz WD; Giaquinta RT
    Plant Physiol; 1984 Dec; 76(4):894-7. PubMed ID: 16663966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalyzed labeling of adipocyte plasma membranes with an aryl azide derivative of glucose.
    Trosper T; Levy D
    J Biol Chem; 1977 Jan; 252(1):181-6. PubMed ID: 833118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sucrose uptake and compartmentation in sugar beet taproot tissue.
    Saftner RA; Daie J; Wyse RE
    Plant Physiol; 1983 May; 72(1):1-6. PubMed ID: 16662941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation by ABA of beta-Conglycinin Expression in Cultured Developing Soybean Cotyledons.
    Bray EA; Beachy RN
    Plant Physiol; 1985 Nov; 79(3):746-50. PubMed ID: 16664485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parachloromercuribenzenesulfonic Acid : a potential tool for differential labeling of the sucrose transporter.
    M'batchi B; Delrot S
    Plant Physiol; 1984 May; 75(1):154-60. PubMed ID: 16663562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation and Subcellular Localization of alpha-Galactosidase-Hemagglutinin in Developing Soybean Cotyledons.
    Herman EM; Shannon LM
    Plant Physiol; 1985 Apr; 77(4):886-90. PubMed ID: 16664156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examination of Le and lele Genotypes of Glycine max (L.) Merr. for Membrane-Bound and Buffer-Soluble Soybean Lectin.
    Pueppke SG
    Plant Physiol; 1981 Oct; 68(4):905-9. PubMed ID: 16662023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrogenic sucrose transport in developing soybean cotyledons.
    Lichtner FT; Spanswick RM
    Plant Physiol; 1981 Apr; 67(4):869-74. PubMed ID: 16661771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymes of sucrose breakdown in soybean nodules: alkaline invertase.
    Morell M; Copeland L
    Plant Physiol; 1984 Apr; 74(4):1030-4. PubMed ID: 16663498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sugar uptake by the dermal transfer cells of developing cotyledons of Vicia faba L. : Mechanism of energy coupling.
    McDonald R; Fieuw S; Patrick JW
    Planta; 1996 Apr; 198(4):502-509. PubMed ID: 28321659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soybean lectin and related proteins in seeds and roots of le and le soybean varieties.
    Vodkin LO; Raikhel NV
    Plant Physiol; 1986 Jun; 81(2):558-65. PubMed ID: 16664856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.