These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16666544)

  • 21. The Relationship between Ribulose Bisphosphate Concentration, Dissolved Inorganic Carbon (DIC) Transport and DIC-Limited Photosynthesis in the Cyanobacterium Synechococcus leopoliensis Grown at Different Concentrations of Inorganic Carbon.
    Mayo WP; Elrifi IR; Turpin DH
    Plant Physiol; 1989 Jun; 90(2):720-7. PubMed ID: 16666834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for Na-Independent HCO(3) Uptake by the Cyanobacterium Synechococcus leopoliensis.
    Espie GS; Canvin DT
    Plant Physiol; 1987 May; 84(1):125-30. PubMed ID: 16665385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-Induced Proton Release by the Cyanobacterium Anabaena variabilis: Dependence on CO(2) and Na.
    Scherer S; Riege H; Böger P
    Plant Physiol; 1988 Mar; 86(3):769-72. PubMed ID: 16665985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of Inorganic Carbon by Ulva lactuca.
    Drechsler Z; Beer S
    Plant Physiol; 1991 Dec; 97(4):1439-44. PubMed ID: 16668569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two Systems for Concentrating CO(2) and Bicarbonate during Photosynthesis by Scenedesmus.
    Thielmann J; Tolbert NE; Goyal A; Senger H
    Plant Physiol; 1990 Mar; 92(3):622-9. PubMed ID: 16667325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inorganic-carbon assimilation in the green seaweed Ulva rigida C.Ag. (Chlorophyta).
    Björk M; Haglund K; Ramazanov Z; Garcia-Reina G; Pedersén M
    Planta; 1992 Apr; 187(1):152-6. PubMed ID: 24177980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence That an Internal Carbonic Anhydrase Is Present in 5% CO(2)-Grown and Air-Grown Chlamydomonas.
    Moroney JV; Togasaki RK; Husic HD; Tolbert NE
    Plant Physiol; 1987 Jul; 84(3):757-61. PubMed ID: 16665517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO(2).
    Satoh A; Kurano N; Miyachi S
    Photosynth Res; 2001; 68(3):215-24. PubMed ID: 16228344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic responses of
    Zuñiga-Rios D; Vásquez-Elizondo RM; Caamal E; Robledo D
    PeerJ; 2021; 9():e10958. PubMed ID: 33717694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of carbonic anhydrase activity in two nitrogen fixing cyanobacteria, Nostoc calcicola and Anabaena sp.
    Jaiswal P; Prasanna R; Kashyap AK
    J Plant Physiol; 2005 Oct; 162(10):1087-94. PubMed ID: 16255166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Regulation of Photosynthesis in Leaves of Field-Grown Spring Wheat (Triticum aestivum L., cv Albis) at Different Levels of Ozone in Ambient Air.
    Lehnherr B; Mächler F; Grandjean A; Fuhrer J
    Plant Physiol; 1988 Dec; 88(4):1115-9. PubMed ID: 16666430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Spectrometric Measurement of Intracellular Carbonic Anhydrase Activity in High and Low C(i) Cells of Chlamydomonas: Studies Using O Exchange with C/O Labeled Bicarbonate.
    Sültemeyer DF; Fock HP; Canvin DT
    Plant Physiol; 1990 Nov; 94(3):1250-7. PubMed ID: 16667825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EFFECT OF CARBONIC ANHYDRASE INHIBITORS ON THE INORGANIC CARBON UPTAKE BY PHYTOPLANKTON NATURAL ASSEMBLAGES(1).
    Mercado JM; Ramírez T; Cortés D; Liger E
    J Phycol; 2009 Feb; 45(1):8-15. PubMed ID: 27033641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acclimation to High CO(2) in Bean : Carbonic Anhydrase and Ribulose Bisphosphate Carboxylase.
    Porter MA; Grodzinski B
    Plant Physiol; 1984 Feb; 74(2):413-6. PubMed ID: 16663432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the na-requirement in cyanobacterial photosynthesis.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1988 Nov; 88(3):757-63. PubMed ID: 16666379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a genomic region that complements a temperature-sensitive, high CO2-requiring mutant of the cyanobacterium, Synechococcus sp. PCC7942.
    Suzuki E; Fukuzawa H; Miyachi S
    Mol Gen Genet; 1991 May; 226(3):401-8. PubMed ID: 1710016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Photosynthetic Reactions in the Activity of Carbonic Anhydrase in Synechococcus sp. (UTEX 2380) in the Light : Inhibitor Studies Using the O-Exchange in C/O-Labeled Bicarbonate.
    Spiller H; Wynns GC; Tu C
    Plant Physiol; 1988 Apr; 86(4):1185-92. PubMed ID: 16666052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803.
    So AK; John-McKay M; Espie GS
    Planta; 2002 Jan; 214(3):456-67. PubMed ID: 11859847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RbcX can function as a rubisco chaperonin, but is non-essential in Synechococcus PCC7942.
    Emlyn-Jones D; Woodger FJ; Price GD; Whitney SM
    Plant Cell Physiol; 2006 Dec; 47(12):1630-40. PubMed ID: 17071623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photosynthesis and Inorganic Carbon Usage by the Marine Cyanobacterium, Synechococcus sp.
    Badger MR; Andrews TJ
    Plant Physiol; 1982 Aug; 70(2):517-23. PubMed ID: 16662526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.