These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16666547)

  • 1. CO(2) and O(2) Exchanges in the CAM Plant Ananas comosus (L.) Merr: Determination of Total and Malate-Decorboxylation-Dependent CO(2)-Assimilation Rates; Study of Light O(2)-Uptake.
    Cote FX; Andre M; Folliot M; Massimino D; Daguenet A
    Plant Physiol; 1989 Jan; 89(1):61-8. PubMed ID: 16666547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study.
    Rainha N; Medeiros VP; Câmara M; Faustino H; Leite JP; Barreto Mdo C; Cruz C; Pacheco CA; Ponte D; Bernardes da Silva A
    Physiol Plant; 2016 Jan; 156(1):29-39. PubMed ID: 26362993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor.
    Borland AM; Griffiths H
    Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis.
    Pedersen O; Rich SM; Pulido C; Cawthray GR; Colmer TD
    New Phytol; 2011 Apr; 190(2):332-9. PubMed ID: 21062288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations.
    Moradshahi A; Vines HM; Black CC
    Plant Physiol; 1977 Feb; 59(2):274-8. PubMed ID: 16659832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO(2)-concentrating: consequences in crassulacean acid metabolism.
    Lüttge U
    J Exp Bot; 2002 Nov; 53(378):2131-42. PubMed ID: 12379779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.
    Hong HT; Nose A; Agarie S
    J Exp Bot; 2004 Oct; 55(406):2201-11. PubMed ID: 15361538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Dioxide and Water Vapor Exchange in the Crassulacean Acid Metabolism Plant Kalanchoë pinnáta during a Prolonged Light Period: METABOLIC AND STOMATAL CONTROL OF CARBON METABOLISM.
    Winter K
    Plant Physiol; 1980 Nov; 66(5):917-21. PubMed ID: 16661552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM
    Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Early Morning Crassulacean Acid Metabolism in Opuntia erinacea var Columbiana (Griffiths) L. Benson.
    Littlejohn RO; Ku MS
    Plant Physiol; 1984 Apr; 74(4):1050-4. PubMed ID: 16663502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN; Griffiths H
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-spectrometric evidence for the double-carboxylation pathway of malate synthesis by Crassulacean acid metabolism plants in light.
    Ritz D; Kluge M; Veith HJ
    Planta; 1986 Feb; 167(2):284-91. PubMed ID: 24241864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Soybean Net Photosynthetic CO(2) Fixation by the Interaction of CO(2), O(2), and Ribulose 1,5-Diphosphate Carboxylase.
    Laing WA
    Plant Physiol; 1974 Nov; 54(5):678-85. PubMed ID: 16658951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen inhibition of photosynthesis and stimulation of photorespiration in soybean leaf cells.
    Servaites JC
    Plant Physiol; 1978 Jan; 61(1):62-7. PubMed ID: 16660238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves by exposure to darkness and high carbon dioxide concentrations.
    Anderson CM; Wilkins MB
    Planta; 1989 Mar; 177(3):401-8. PubMed ID: 24212434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO(2) in Arabidopsis thaliana.
    Gandin A; Duffes C; Day DA; Cousins AB
    Plant Cell Physiol; 2012 Sep; 53(9):1627-37. PubMed ID: 22848123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crassulacean acid metabolism photosynthesis: ;working the night shift'.
    Black CC; Osmond CB
    Photosynth Res; 2003; 76(1-3):329-41. PubMed ID: 16228591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose 2,6-bisphosphate, carbohydrate partitioning, and crassulacean Acid metabolism.
    Fahrendorf T; Holtum JA; Mukherjee U; Latzko E
    Plant Physiol; 1987 May; 84(1):182-7. PubMed ID: 16665395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.