These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 166666)

  • 21. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site.
    Allendorf MD; Spira DJ; Solomon EI
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3063-7. PubMed ID: 2987909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus.
    Koroleva OV; Stepanova EV; Binukov VI; Timofeev VP; Pfeil W
    Biochim Biophys Acta; 2001 Jun; 1547(2):397-407. PubMed ID: 11410296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis.
    Scharf B; Engelhard M
    Biochemistry; 1993 Nov; 32(47):12894-900. PubMed ID: 8251512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic studies on the mechanism of the topa quinone generation in bacterial monoamine oxidase.
    Matsuzaki R; Suzuki S; Yamaguchi K; Fukui T; Tanizawa K
    Biochemistry; 1995 Apr; 34(14):4524-30. PubMed ID: 7718554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [PHENOLOXIDASES IN THE ASCOMYCETE PODOSPORA ANSERINA. I. THE IDENTIFICATION OF LACCASE AND TYROSINASE IN THE WILD STRAIN].
    ESSER K
    Arch Mikrobiol; 1963 Aug; 46():217-26. PubMed ID: 14044835
    [No Abstract]   [Full Text] [Related]  

  • 26. Multicopper oxidase laccases with distinguished spectral properties: A new outlook.
    Agrawal K; Verma P
    Heliyon; 2020 May; 6(5):e03972. PubMed ID: 32435715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of cucumber ascorbate oxidase and its reaction with hexacyanoferrate (II).
    Kawahara K; Suzuki S; Sakurai T; Nakahara A
    Arch Biochem Biophys; 1985 Aug; 241(1):179-86. PubMed ID: 2992389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Type 3 copper site is intact but labile in Type 2-depleted laccase.
    Frank P; Farver O; Pecht I
    J Biol Chem; 1983 Sep; 258(18):11112-7. PubMed ID: 6309831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new copper(II) electron paramagnetic resonance signal in two laccases and in cytochrome c oxidase.
    Reinhammar B; Malkin R; Jensen P; Karlsson B; Andréasson LE; Aasa R; Vänngård T; Malmström BG
    J Biol Chem; 1980 Jun; 255(11):5000-3. PubMed ID: 6246091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbate oxidase from Cucurbita pepo medullosa. New method of purification and reinvestigation of properties.
    Marchesini A; Kroneck PM
    Eur J Biochem; 1979 Nov; 101(1):65-76. PubMed ID: 228938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The phenoloxidases of the ascomycete Podospora anserina. XIII. Action and interaction of genes controlling the formation of laccase.
    Prillinger H; Esser K
    Mol Gen Genet; 1977 Nov; 156(3):333-45. PubMed ID: 414070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EPR signals from cytochrome c oxidase.
    Aasa R; Albracht PJ; Falk KE; Lanne B; Vänngard T
    Biochim Biophys Acta; 1976 Feb; 422(2):260-72. PubMed ID: 174742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative characterization of methods for removal of Cu(II) from the active sites of fungal laccases.
    Koroleva OV; Stepanova EV; Gavrilova VP; Biniukov VI; Pronin AM
    Biochemistry (Mosc); 2001 Sep; 66(9):960-6. PubMed ID: 11703175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Interaction of ascorbate oxidase with inorganic anions].
    Aikazian VTs; Nalbandian RM
    Biokhimiia; 1977 Nov; 42(11):2027-34. PubMed ID: 588636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt tyrosinase: replacement of the binuclear copper of Neurospora tyrosinase by cobalt.
    Rüegg C; Lerch K
    Biochemistry; 1981 Mar; 20(5):1256-62. PubMed ID: 6452896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper.
    Reinhammar B; Oda Y
    J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents.
    López-Cruz JI; Viniegra-Gonzalez G; Hernández-Arana A
    Bioconjug Chem; 2006; 17(4):1093-8. PubMed ID: 16848420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site.
    Palmer AE; Szilagyi RK; Cherry JR; Jones A; Xu F; Solomon EI
    Inorg Chem; 2003 Jun; 42(13):4006-17. PubMed ID: 12817956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoreduction of copper chromophores in blue oxidases.
    Henry Y; Peisach J
    J Biol Chem; 1978 Nov; 253(21):7751-6. PubMed ID: 212433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces.
    Kiiskinen LL; Viikari L; Kruus K
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):198-204. PubMed ID: 12111146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.