These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 16666626)
21. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C Kong W; Yoo MJ; Zhu D; Noble JD; Kelley TM; Li J; Kirst M; Assmann SM; Chen S Plant Mol Biol; 2020 Aug; 103(6):653-667. PubMed ID: 32468353 [TBL] [Abstract][Full Text] [Related]
22. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C Guan Q; Kong W; Zhu D; Zhu W; Dufresne C; Tian J; Chen S J Proteomics; 2021 Jan; 231():104019. PubMed ID: 33075550 [TBL] [Abstract][Full Text] [Related]
23. Environmental Control of Phosphoenolpyruvate Carboxylase Induction in Mature Mesembryanthemum crystallinum L. Piepenbrock M; Schmitt JM Plant Physiol; 1991 Nov; 97(3):998-1003. PubMed ID: 16668542 [TBL] [Abstract][Full Text] [Related]
24. Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum by High Salinity: Mass Increase and de Novo Synthesis of PEP-Carboxylase. Höfner R; Vazquez-Moreno L; Winter K; Bohnert HJ; Schmitt JM Plant Physiol; 1987 Apr; 83(4):915-9. PubMed ID: 16665363 [TBL] [Abstract][Full Text] [Related]
25. Physiological Changes in Guan Q; Tan B; Kelley TM; Tian J; Chen S Front Plant Sci; 2020; 11():283. PubMed ID: 32256510 [TBL] [Abstract][Full Text] [Related]
26. Induction of PEP carboxylase and crassulacean acid metabolism by gibberellic acid in Mesembryanthemum crystallinum. Guralnick LJ; Ku MS; Edwards GE; Strand D; Hockema B; Earnest J Plant Cell Physiol; 2001 Feb; 42(2):236-9. PubMed ID: 11230579 [TBL] [Abstract][Full Text] [Related]
27. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Dyachenko OV; Zakharchenko NS; Shevchuk TV; Bohnert HJ; Cushman JC; Buryanov YI Biochemistry (Mosc); 2006 Apr; 71(4):461-5. PubMed ID: 16615868 [TBL] [Abstract][Full Text] [Related]
28. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum. Tsiantis MS; Bartholomew DM; Smith JA Plant J; 1996 May; 9(5):729-36. PubMed ID: 8653119 [TBL] [Abstract][Full Text] [Related]
29. Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Broetto F; Monteiro Duarte H; Lüttge U J Plant Physiol; 2007 Jul; 164(7):904-12. PubMed ID: 16781797 [TBL] [Abstract][Full Text] [Related]
30. The response of a model C Nosek M; Kaczmarczyk A; Śliwa M; Jędrzejczyk R; Kornaś A; Supel P; Kaszycki P; Miszalski Z J Plant Physiol; 2019 Sep; 240():153005. PubMed ID: 31271976 [TBL] [Abstract][Full Text] [Related]
31. Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant. Yu K; D'Odorico P; Li W; He Y Oecologia; 2017 Jun; 184(2):351-361. PubMed ID: 28401290 [TBL] [Abstract][Full Text] [Related]
32. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Winter K; Foster JG; Edwards GE; Holtum JA Plant Physiol; 1982 Feb; 69(2):300-7. PubMed ID: 16662197 [TBL] [Abstract][Full Text] [Related]
33. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Li B; Chollet R Arch Biochem Biophys; 1994 Oct; 314(1):247-54. PubMed ID: 7944403 [TBL] [Abstract][Full Text] [Related]
34. At the Edges of Photosynthetic Metabolic Plasticity-On the Rapidity and Extent of Changes Accompanying Salinity Stress-Induced CAM Photosynthesis Withdrawal. Nosek M; Gawrońska K; Rozpądek P; Sujkowska-Rybkowska M; Miszalski Z; Kornaś A Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445127 [TBL] [Abstract][Full Text] [Related]
35. The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. Lüttge U New Phytol; 1993 Sep; 125(1):59-71. PubMed ID: 33874606 [TBL] [Abstract][Full Text] [Related]
36. Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. Vera-Estrella R; Barkla BJ; Amezcua-Romero JC; Pantoja O Plant Cell Environ; 2012 Mar; 35(3):485-501. PubMed ID: 21895697 [TBL] [Abstract][Full Text] [Related]
37. Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C Lim SD; Lee S; Choi WG; Yim WC; Cushman JC Front Plant Sci; 2019; 10():101. PubMed ID: 30804970 [TBL] [Abstract][Full Text] [Related]
38. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Cushman JC; Meyer G; Michalowski CB; Schmitt JM; Bohnert HJ Plant Cell; 1989 Jul; 1(7):715-25. PubMed ID: 2535520 [TBL] [Abstract][Full Text] [Related]
39. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum. McElwain EF; Bohnert HJ; Thomas JC Plant Physiol; 1992 Jul; 99(3):1261-4. PubMed ID: 16668999 [TBL] [Abstract][Full Text] [Related]
40. Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Cushman JC Eur J Biochem; 1992 Sep; 208(2):259-66. PubMed ID: 1521524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]