BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16666680)

  • 1. Amino Acid Metabolism of Lemna minor L. : IV. N-Labeling Kinetics of the Amide and Amino Groups of Glutamine and Asparagine.
    Rhodes D; Rich PJ; Brunk DG
    Plant Physiol; 1989 Apr; 89(4):1161-71. PubMed ID: 16666680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary gas chromatography of amino acids, including asparagine and glutamine: sensitive gas chromatographic-mass spectrometric and selected ion monitoring gas chromatographic-mass spectrometric detection of the N,O(S)-tert.-butyldimethylsilyl derivatives.
    Chaves Das Neves HJ; Vasconcelos AM
    J Chromatogr; 1987 Apr; 392():249-58. PubMed ID: 3597576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of amino- and amide-15N glutamine enrichment with tertiary butyldimethylsilyl derivatives.
    Williams BD; Wolfe RR
    Biol Mass Spectrom; 1994 Nov; 23(11):682-8. PubMed ID: 7811757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino Acid metabolism in pea leaves : utilization of nitrogen from amide and amino groups of [N]asparagine.
    Ta TC; Joy KW; Ireland RJ
    Plant Physiol; 1984 Apr; 74(4):822-6. PubMed ID: 16663517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino Acid Metabolism of Lemna minor L. : III. Responses to Aminooxyacetate.
    Brunk DG; Rhodes D
    Plant Physiol; 1988 Jun; 87(2):447-53. PubMed ID: 16666162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino Acid Metabolism of Lemna minor L. : I. Responses to Methionine Sulfoximine.
    Rhodes D; Deal L; Haworth P; Jamieson GC; Reuter CC; Ericson MC
    Plant Physiol; 1986 Dec; 82(4):1057-62. PubMed ID: 16665134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino Acid metabolism of pea leaves: labeling studies on utilization of amides.
    Bauer A; Joy KW; Urquhart AA
    Plant Physiol; 1977 May; 59(5):920-4. PubMed ID: 16659968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of the amide groups of asparagine and 2-hydroxysuccinamic Acid by young pea leaves.
    Ta TC; Joy KW; Ireland RJ
    Plant Physiol; 1984 Jul; 75(3):527-30. PubMed ID: 16663659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct analysis of 15N-label in amino and amide groups of glutamine and asparagine.
    Scharff-Poulsen AM; Schou C; Egsgaard H
    J Mass Spectrom; 2007 Feb; 42(2):161-70. PubMed ID: 17186571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy.
    Cao C; Chen JL; Yang Y; Huang F; Otting G; Su XC
    J Biomol NMR; 2014 Aug; 59(4):251-61. PubMed ID: 25002097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation pathway for glutamine identification: loss of 73 Da from dimethylformamidine glutamine isobutyl ester.
    Zhang Q; Wysocki VH; Scaraffia PY; Wells MA
    J Am Soc Mass Spectrom; 2005 Jul; 16(7):1192-203. PubMed ID: 15922620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Chromatography-Mass Spectrometry of N- Heptafluorobutyryl Isobutyl Esters of Amino Acids in the Analysis of the Kinetics of [N]H(4) Assimilation in Lemna minor L.
    Rhodes D; Myers AC; Jamieson G
    Plant Physiol; 1981 Nov; 68(5):1197-205. PubMed ID: 16662074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).
    Haribal M; Jander G
    J Exp Biol; 2015 Dec; 218(Pt 23):3797-806. PubMed ID: 26632455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of stable isotopes and gas chromatography-mass spectrometry in the study of different pools of neurotransmitter amino acids in brain slices.
    Kapetanovic IM; Yonekawa WD; Kupferberg HJ
    J Chromatogr; 1990 Feb; 500():387-94. PubMed ID: 1970343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of 15N enrichment in multiple amino acids and urea in a single analysis by gas chromatography/mass spectrometry.
    Patterson BW; Carraro F; Wolfe RR
    Biol Mass Spectrom; 1993 Sep; 22(9):518-23. PubMed ID: 8399400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of free ammonium and asparagine and glutamine amide-nitrogen in extracts of plant tissue.
    Henderlong PR; Schmidt RR
    Plant Physiol; 1966 Sep; 41(7):1102-5. PubMed ID: 5954869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic changes associated with adaptation of plant cells to water stress.
    Rhodes D; Handa S; Bressan RA
    Plant Physiol; 1986 Dec; 82(4):890-903. PubMed ID: 16665163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln.
    Sheppard K; Akochy PM; Salazar JC; Söll D
    J Biol Chem; 2007 Apr; 282(16):11866-73. PubMed ID: 17329242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical analysis of amino acids, polyamines and carboxylic acids: GC-MS quantitation of tBDMS derivatives using ammonia positive chemical ionization.
    Wood PL; Khan MA; Moskal JR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Feb; 831(1-2):313-9. PubMed ID: 16406747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.