These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1057 related articles for article (PubMed ID: 166667)
1. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin. VON Jagow G; Bohrer C Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667 [TBL] [Abstract][Full Text] [Related]
2. Dynamic control on the rate of the reduction of the b type cytochromes in submitochondrial particles. Eisenbach M; Gutman M Eur J Biochem; 1975 Mar; 52(1):107-16. PubMed ID: 170082 [TBL] [Abstract][Full Text] [Related]
3. Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain. Bowyer JR; Trumpower BL J Biol Chem; 1981 Mar; 256(5):2245-51. PubMed ID: 6257713 [TBL] [Abstract][Full Text] [Related]
4. The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris. King MT; Drews G Arch Microbiol; 1975 Mar; 102(3):219-31. PubMed ID: 168826 [TBL] [Abstract][Full Text] [Related]
5. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Ernster L; Lee IY; Norling B; Persson B Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591 [No Abstract] [Full Text] [Related]
6. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein. Japa S; Beattie DS J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777 [TBL] [Abstract][Full Text] [Related]
7. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. Matsuno-Yagi A; Hatefi Y J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412 [TBL] [Abstract][Full Text] [Related]
8. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Zannoni D; Melandri BA; Baccarini-Melandri A Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045 [TBL] [Abstract][Full Text] [Related]
9. On the redox potentials of ubiquinone and cytochrome b in the respiratory chain. Urban PF; Klingenberg M Eur J Biochem; 1969 Jul; 9(4):519-25. PubMed ID: 5806500 [No Abstract] [Full Text] [Related]
10. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles. Nicholls P Biochim Biophys Acta; 1976 Apr; 430(1):30-45. PubMed ID: 177075 [TBL] [Abstract][Full Text] [Related]
11. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Kröger A; Klingenberg M Eur J Biochem; 1973 Nov; 39(2):313-23. PubMed ID: 4359626 [No Abstract] [Full Text] [Related]
12. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of th respiratory chain. Thierbach G; Reichenbach H Biochim Biophys Acta; 1981 Dec; 638(2):282-9. PubMed ID: 6274398 [TBL] [Abstract][Full Text] [Related]
13. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model. Orii Y; Miki T J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907 [TBL] [Abstract][Full Text] [Related]
14. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones. Zhu QS; Beattie DS J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles. Hatefi Y; Yagi T Biochemistry; 1982 Dec; 21(25):6614-8. PubMed ID: 7150580 [TBL] [Abstract][Full Text] [Related]
16. Reduction of mitochondrial components by durohydroquinone. Boveris A; Oshino R; Erecińska M; Chance B Biochim Biophys Acta; 1971 Aug; 245(1):1-16. PubMed ID: 5132471 [No Abstract] [Full Text] [Related]
17. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol. Papa S; Lorusso M; Guerrieri F Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540 [TBL] [Abstract][Full Text] [Related]
18. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Beattie DS; Japa S; Howton M; Zhu QS Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974 [TBL] [Abstract][Full Text] [Related]
19. The respiratory chain of plant mitochondria. IV. Oxidation rates of the respiratory carriers of mung bean mitochondria in the presence of cyanide. Storey BT Plant Physiol; 1970 Apr; 45(4):447-54. PubMed ID: 5427115 [TBL] [Abstract][Full Text] [Related]
20. Antimycin-insensitive mutants of Candida utilis II. The effects of antimycin on Cytochrome b. Grimmelikhuijzen CJ; Marres CA; Slater EC Biochim Biophys Acta; 1975 Mar; 376(3):533-48. PubMed ID: 1168499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]