These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16666708)

  • 1. Regulation of transplasmalemma electron transport in oat mesophyll cells by sphingoid bases and blue light.
    Dharmawardhane S; Rubinstein B; Stern AI
    Plant Physiol; 1989 Apr; 89(4):1345-50. PubMed ID: 16666708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between Electron Transport across the Plasmalemma and a pH Decrease in the Bulk Medium.
    Rubinstein B; Stern AI; Chalmers JD
    Plant Physiol; 1992 Mar; 98(3):988-94. PubMed ID: 16668776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of nitroxide spin labels with chloroplasts.
    Briggs SP; Haug AR; Scheffer RP
    Plant Physiol; 1982 Sep; 70(3):668-70. PubMed ID: 16662554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of plasma membrane redox activity in light effects in plants.
    Rubinstein B; Stern AI
    J Bioenerg Biomembr; 1991 Jun; 23(3):393-408. PubMed ID: 1864849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of Transplasmalemma Redox Activity to Proton and Solute Transport by Roots of Zea mays.
    Rubinstein B; Stern AI
    Plant Physiol; 1986 Apr; 80(4):805-11. PubMed ID: 16664722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Stimulated Changes in the Acidity of Suspensions of Oat Protoplasts: Dependence upon Photosynthesis.
    Kelly BM
    Plant Physiol; 1983 Jun; 72(2):351-5. PubMed ID: 16663005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingosine kinase from Swiss 3T3 fibroblasts: a convenient assay for the measurement of intracellular levels of free sphingoid bases.
    Olivera A; Rosenthal J; Spiegel S
    Anal Biochem; 1994 Dec; 223(2):306-12. PubMed ID: 7887476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox activity at the surface of oat root cells.
    Rubinstein B; Stern AI; Stout RG
    Plant Physiol; 1984 Oct; 76(2):386-91. PubMed ID: 16663850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells.
    Ahn EH; Schroeder JJ
    Exp Biol Med (Maywood); 2002 May; 227(5):345-53. PubMed ID: 11976405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The separation and direct detection of ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and evaporative light-scattering detection.
    McNabb TJ; Cremesti AE; Brown PR; Fischl AS
    Anal Biochem; 1999 Dec; 276(2):242-50. PubMed ID: 10603247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red/far-red light modulates phospholipase D activity in oat seedlings: relation of enzyme photosensitivity to photosynthesis.
    Kabachevskaya AM; Liakhnovich GV; Kisel MA; Volotovski ID
    J Plant Physiol; 2007 Jan; 164(1):108-10. PubMed ID: 16621133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for involvement of photosynthetic processes in the stomatal response to CO2.
    Messinger SM; Buckley TN; Mott KA
    Plant Physiol; 2006 Feb; 140(2):771-8. PubMed ID: 16407445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox.
    Barr R; Branstetter BA; Rajnicek A; Crane FL; Löw H
    Biochim Biophys Acta; 1991 Jun; 1058(2):261-8. PubMed ID: 1904770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing J774A.1 cells to new medium perturbs multiple signaling pathways, including the modulation of protein kinase C by endogenous sphingoid bases.
    Smith ER; Jones PL; Boss JM; Merrill AH
    J Biol Chem; 1997 Feb; 272(9):5640-6. PubMed ID: 9038174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. I. Growth can occur without photosynthesis.
    Van Volkenburgh E; Cleland RE
    Planta; 1990 Aug; 182(1):72-6. PubMed ID: 11538275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high potential acceptor for photosystem II.
    Bowes JM; Crofts AR; Itoh S
    Biochim Biophys Acta; 1979 Aug; 547(2):320-35. PubMed ID: 37906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis.
    Shi L; Bielawski J; Mu J; Dong H; Teng C; Zhang J; Yang X; Tomishige N; Hanada K; Hannun YA; Zuo J
    Cell Res; 2007 Dec; 17(12):1030-40. PubMed ID: 18059378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster.
    Fyrst H; Herr DR; Harris GL; Saba JD
    J Lipid Res; 2004 Jan; 45(1):54-62. PubMed ID: 13130120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii.
    Im CS; Eberhard S; Huang K; Beck CF; Grossman AR
    Plant J; 2006 Oct; 48(1):1-16. PubMed ID: 16972865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Sphingoid Bases from Starfish Asterias amurensis Glucosylceramides and Their Effects on Sphingolipid Production in Cultured Keratinocytes.
    Mikami D; Sakai S; Yuyama K; Igarashi Y
    J Oleo Sci; 2019 May; 68(5):427-441. PubMed ID: 30971644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.