BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16666778)

  • 1. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots.
    Jabben M; Shanklin J; Vierstra RD
    Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Tobacco Expressing Functional Oat Phytochrome : Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots.
    Cherry JR; Hershey HP; Vierstra RD
    Plant Physiol; 1991 Jul; 96(3):775-85. PubMed ID: 16668254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native phytochrome: immunoblot analysis of relative molecular mass and in-vitro proteolytic degradation for several plant species.
    Vierstra RD; Cordonnier MM; Pratt LH; Quail PH
    Planta; 1984 May; 160(6):521-8. PubMed ID: 24258779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunopurification and initial characterization of dicotyledonous phytochrome.
    Cordonnier MM; Pratt LH
    Plant Physiol; 1982 Feb; 69(2):360-5. PubMed ID: 16662209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to pisum and Avena phytochrome.
    Cordonnier MM; Greppin H; Pratt LH
    Plant Physiol; 1984 Jan; 74(1):123-7. PubMed ID: 16663365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Phytochrome Immunochemistry as Assayed by Antisera against Both Monocotyledonous and Dicotyledonous Phytochrome.
    Cordonnier MM; Pratt LH
    Plant Physiol; 1982 Sep; 70(3):912-6. PubMed ID: 16662599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide.
    Yamamoto KT
    Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Properties of Membrane-bound Phytochrome.
    Boisard J; Marmé D; Briggs WR
    Plant Physiol; 1974 Sep; 54(3):272-6. PubMed ID: 16658872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification with Monoclonal Antibodies of a Second Antigenic Domain on Avena Phytochrome that Changes upon Its Photoconversion.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Plant Physiol; 1986 Sep; 82(1):109-13. PubMed ID: 16664975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular localisation of phytochrome and ubiquitin in red-light-irradiated oat coleoptiles by electron microscopy.
    Speth V; Otto V; Schäfer E
    Planta; 1987 Jul; 171(3):332-8. PubMed ID: 24227432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral properties of soluble and pelletable phytochrome from epicotyls of etiolated pea seedlings.
    Shimazaki Y; Furuya M
    Planta; 1980 Aug; 149(3):313-7. PubMed ID: 24306305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red Light-enhanced Phytochrome Pelletability: Re-examination and Further Characterization.
    Pratt LH; Marmé D
    Plant Physiol; 1976 Nov; 58(5):686-92. PubMed ID: 16659745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A monoclonal antibody specific for the red-absorbing form of phytochrome.
    Holdsworth ML; Whitelam GC
    Planta; 1987 Dec; 172(4):539-47. PubMed ID: 24226075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Destruction of Phytochrome in the Red-absorbing Form.
    Stone HJ; Pratt LH
    Plant Physiol; 1979 Apr; 63(4):680-2. PubMed ID: 16660790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkyl and omega-amino alkyl agaroses as probes of light-induced changes in phytochrome from pea seedlings (Pisum sativum cv. Alaska).
    Yamamoto KT; Smith WO
    Biochim Biophys Acta; 1981 Mar; 668(1):27-34. PubMed ID: 7236707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications of Sulfhydryl Groups on Phytochrome and Their Influence on Physicochemical Differences between the Red- and Far-Red-Absorbing Forms.
    Smith WO; Cyr KL
    Plant Physiol; 1988 May; 87(1):195-200. PubMed ID: 16666102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome-mediated phototropism in maize mesocotyls. Relation between light and Pfr gradients, light growth response and phototropism.
    Kunzelmann P; Schäfer E
    Planta; 1985 Aug; 165(3):424-9. PubMed ID: 24241149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.