These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 16666911)
1. Regulation of 5-aminolevulinic Acid synthesis in developing chloroplasts : I. Effect of light/dark treatments in vivo and in organello. Huang L; Castelfranco PA Plant Physiol; 1989 Jul; 90(3):996-1002. PubMed ID: 16666911 [TBL] [Abstract][Full Text] [Related]
2. Regulation of 5-Aminolevulinic Acid (ALA) Synthesis in Developing Chloroplasts : III. Evidence for Functional Heterogeneity of the ALA Pool. Huang L; Castelfranco PA Plant Physiol; 1990 Jan; 92(1):172-8. PubMed ID: 16667243 [TBL] [Abstract][Full Text] [Related]
3. Regeneration of Magnesium-2,4-Divinylpheoporphyrin a(5) (Divinyl Protochlorophyllide) in Isolated Developing Chloroplasts. Huang L; Castelfranco PA Plant Physiol; 1986 Sep; 82(1):285-8. PubMed ID: 16665008 [TBL] [Abstract][Full Text] [Related]
4. Regulation of 5-Aminolevulinic Acid Synthesis in Developing Chloroplasts : IV. An Endogenous Inhibitor from the Thylakoid Membranes. Castelfranco PA; Zeng X Plant Physiol; 1991 Sep; 97(1):1-6. PubMed ID: 16668354 [TBL] [Abstract][Full Text] [Related]
5. Regulation of 5-Aminolevulinic Acid (ALA) Synthesis in Developing Chloroplasts : II. Regulation of ALA-Synthesizing Capacity by Phytochrome. Huang L; Bonner BA; Castelfranco PA Plant Physiol; 1989 Jul; 90(3):1003-8. PubMed ID: 16666843 [TBL] [Abstract][Full Text] [Related]
6. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. Zhi T; Zhou Z; Qiu B; Zhu Q; Xiong X; Ren C Plant J; 2019 May; 98(4):622-638. PubMed ID: 30666736 [TBL] [Abstract][Full Text] [Related]
7. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts. Fufsler TP; Castelfranco PA; Wong YS Plant Physiol; 1984 Apr; 74(4):928-33. PubMed ID: 16663535 [TBL] [Abstract][Full Text] [Related]
8. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Richter A; Peter E; Pörs Y; Lorenzen S; Grimm B; Czarnecki O Plant Cell Physiol; 2010 May; 51(5):670-81. PubMed ID: 20375109 [TBL] [Abstract][Full Text] [Related]
9. Gabaculine alters plastid development and differentially affects abundance of plastid-encoded DPOR and nuclear-encoded GluTR and FLU-like proteins in spruce cotyledons. Demko V; Pavlovic A; Hudák J J Plant Physiol; 2010 Jun; 167(9):693-700. PubMed ID: 20129699 [TBL] [Abstract][Full Text] [Related]
10. Phototransformation of protochlorophyllideF657 in etiochloroplasts isolated from pine cotyledons; dark reformation of this pigment-complex from a pool of ALA-protochlorophyllideF635 in the presence of NADPH. Wolwertz MR; Brouers M Photosynth Res; 1980 Jun; 1(2):105-13. PubMed ID: 24470049 [TBL] [Abstract][Full Text] [Related]
11. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Zhao Y; Han Q; Ding C; Huang Y; Liao J; Chen T; Feng S; Zhou L; Zhang Z; Chen Y; Yuan S; Yuan M Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092859 [TBL] [Abstract][Full Text] [Related]
12. Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Reinbothe S; Runge S; Reinbothe C; van Cleve B; Apel K Plant Cell; 1995 Feb; 7(2):161-72. PubMed ID: 7756827 [TBL] [Abstract][Full Text] [Related]
13. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Kolossov VL; Kopetz KJ; Rebeiz CA Photochem Photobiol; 2003 Aug; 78(2):184-96. PubMed ID: 12945588 [TBL] [Abstract][Full Text] [Related]
14. Evidence that Isolated Developing Chloroplasts Are Capable of Synthesizing Chlorophyll b from 5-Aminolevulinic Acid. Huang L; Hoffman NE Plant Physiol; 1990 Sep; 94(1):375-9. PubMed ID: 16667712 [TBL] [Abstract][Full Text] [Related]
15. Chlorophyll Biosynthetic Reactions during Senescence of Excised Barley (Hordeum vulgare L. cv IB 65) Leaves. Hukmani P; Tripathy BC Plant Physiol; 1994 Aug; 105(4):1295-1300. PubMed ID: 12232286 [TBL] [Abstract][Full Text] [Related]
16. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Kumar Tewari A ; Charan Tripathy B Plant Physiol; 1998 Jul; 117(3):851-8. PubMed ID: 9662527 [TBL] [Abstract][Full Text] [Related]
17. Chloroplast culture: the chlorophyll repair potential of mature chloroplasts incubated in a simple medium. Bazzaz MB; Rebeiz CA Biochim Biophys Acta; 1978 Nov; 504(2):310-23. PubMed ID: 718879 [TBL] [Abstract][Full Text] [Related]
18. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway. Wu Y; Jin X; Liao W; Hu L; Dawuda MM; Zhao X; Tang Z; Gong T; Yu J Front Plant Sci; 2018; 9():635. PubMed ID: 29868088 [TBL] [Abstract][Full Text] [Related]
19. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Daniell H; Rebeiz CA Biotechnol Bioeng; 1984 May; 26(5):481-7. PubMed ID: 18553343 [TBL] [Abstract][Full Text] [Related]
20. Analysis of protochlorophyllide reaccumulation in the phytochrome chromophore-deficient aurea and yg-2 mutants of tomato by in vivo fluorescence spectroscopy. Ryberg M; Terry MJ Photosynth Res; 2002; 74(2):195-203. PubMed ID: 16228558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]