BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16666958)

  • 21. Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets.
    Schwanstecher M; Löser S; Rietze I; Panten U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):83-9. PubMed ID: 1903188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.
    Yu M; Martin RL; Jain S; Chen LJ; Segel IH
    Arch Biochem Biophys; 1989 Feb; 269(1):156-74. PubMed ID: 2537056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the Activities and Some Properties of Pyrophosphate and ATP Dependent Fructose-6-Phosphate 1-Phosphotransferases of Phaseolus vulgaris Seeds.
    Botha FC; Small JG
    Plant Physiol; 1987 Apr; 83(4):772-7. PubMed ID: 16665337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of regulatory ligands to rabbit muscle phosphofructokinase. A model for nucleotide binding as a function of temperature and pH.
    Pettigrew DW; Frieden C
    J Biol Chem; 1979 Mar; 254(6):1887-95. PubMed ID: 33988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphofructokinase in rabbit dental pulp is less sensitive to ATP inhibition.
    Yamazaki T; Hara M; Kurihara Y; Kodaka S; Nakai K; Ozaki I; Sugiya H; Furuyama S
    J Nihon Univ Sch Dent; 1989 Mar; 31(1):366-71. PubMed ID: 2525180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of C-terminal motifs responsible for transmission of inhibition by ATP of mammalian phosphofructokinase, and their contribution to other allosteric effects.
    Martínez-Costa OH; Hermida C; Sánchez-Martínez C; Santamaría B; Aragón JJ
    Biochem J; 2004 Jan; 377(Pt 1):77-84. PubMed ID: 12974670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of rat lens phosphofructokinase.
    Cheng HM; Chylack LT
    Invest Ophthalmol; 1976 Apr; 15(4):279-87. PubMed ID: 4411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphofructokinase from Plasmodium berghei: a kinetic model of allosteric regulation.
    Buckwitz D; Jacobasch G; Gerth C
    Mol Biochem Parasitol; 1990 May; 40(2):225-32. PubMed ID: 2141917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative analysis of sea urchin egg kinesin-driven microtubule motility.
    Cohn SA; Ingold AL; Scholey JM
    J Biol Chem; 1989 Mar; 264(8):4290-7. PubMed ID: 2522443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The binding properties of the solubilized sulfonylurea receptor from a pancreatic B-cell line are modulated by the Mg(++)-complex of ATP.
    Schwanstecher M; Behrends S; Brandt C; Panten U
    J Pharmacol Exp Ther; 1992 Aug; 262(2):495-502. PubMed ID: 1501109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reciprocal regulation of fructose 1,6-bisphosphatase and phosphofructokinase by fructose 2,6-bisphosphate in swine kidney.
    Muniyappa K; Leibach FH; Mendicino J
    Life Sci; 1983 Jan; 32(3):271-8. PubMed ID: 6218355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for a specific phosphoryl binding site in swine kidney phosphofructokinase.
    Ashkar S; Muniyappa K; Leibach F; Mendicino J
    Mol Cell Biochem; 1984 Apr; 62(1):77-92. PubMed ID: 6234453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of 3-Phosphoglycerate-Dependent O(2) Evolution by Phosphoenolpyruvate in C(4) Mesophyll Chloroplasts of Digitaria sanguinalis (L.) Scop.
    Rumpho ME; Edwards GE
    Plant Physiol; 1984 Nov; 76(3):711-8. PubMed ID: 16663911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):433-42. PubMed ID: 6459083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate.
    Best PM; Donaldson SK; Kerrick WG
    J Physiol; 1977 Feb; 265(1):1-17. PubMed ID: 850150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of potassium antimony tartrate on rat erythrocyte phosphofructokinase activity.
    Poon R; Chu I
    J Biochem Mol Toxicol; 1998; 12(4):227-33. PubMed ID: 9580875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affinity partitioning of erythrocytic phosphofructokinase in aqueous two-phase systems containing poly(ethylene glycol)-bound cibacron blue. Influence of pH, ionic strength and substrates/effectors.
    Tejedor MC; Delgado C; Grupeli M; Luque J
    J Chromatogr; 1992 Jan; 589(1-2):127-34. PubMed ID: 1531834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.