These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16667134)

  • 21. Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [
    Karthik S; Tuteja N; Ganapathi A; Manickavasagam M
    3 Biotech; 2019 Jan; 9(1):10. PubMed ID: 30622848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Stable
    Cui ML; Liu C; Piao CL; Liu CL
    Front Plant Sci; 2020; 11():604255. PubMed ID: 33381137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.
    Saini R; Sonia ; Jaiwal PK
    Plant Cell Rep; 2003 Jun; 21(9):851-9. PubMed ID: 12789502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.
    Olhoft PM; Flagel LE; Donovan CM; Somers DA
    Planta; 2003 Mar; 216(5):723-35. PubMed ID: 12624759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars.
    Arun M; Subramanyam K; Mariashibu TS; Theboral J; Shivanandhan G; Manickavasagam M; Ganapathi A
    Appl Biochem Biotechnol; 2015 Feb; 175(4):2266-87. PubMed ID: 25480345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode.
    Cho HJ; Farrand SK; Noel GR; Widholm JM
    Planta; 2000 Jan; 210(2):195-204. PubMed ID: 10664125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.
    Paz MM; Martinez JC; Kalvig AB; Fonger TM; Wang K
    Plant Cell Rep; 2006 Mar; 25(3):206-13. PubMed ID: 16249869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple procedure for the expression of genes in transgenic soybean callus tissue.
    Luo G; Hepburn A; Widholm J
    Plant Cell Rep; 1994 Aug; 13(11):632-6. PubMed ID: 24196243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refined glufosinate selection and its extent of exposure for improving the
    Hada A; Krishnan V; Punjabi M; Basak N; Pandey V; Jeevaraj T; Marathe A; Gupta AK; Jolly M; Kumar A; Dahuja A; Manickavasagam M; Ganapathi A; Sachdev A
    Plant Biotechnol (Tokyo); 2016; 33(5):341-350. PubMed ID: 31367185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agrobacterium-mediated transformation of the β-subunit gene in 7S globulin protein in soybean using RNAi technology.
    Qu J; Liu SY; Wang PW; Guan SY; Fan YG; Yao D; Zhang L; Dai JL
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soybean (Glycine max) transformation using mature cotyledonary node explants.
    Olhoft PM; Donovan CM; Somers DA
    Methods Mol Biol; 2006; 343():385-96. PubMed ID: 16988361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors affecting soybean cotyledonary node transformation.
    Meurer CA; Dinkins RD; Collins GB
    Plant Cell Rep; 1998 Dec; 18(3-4):180-186. PubMed ID: 30744217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Agrobacterium-mediated genetic transformation of secondary somatic embryos in alfalfa].
    Liu W; Duan Q; Liu J; Sun Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):203-13. PubMed ID: 22667122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persistence of Agrobacterium tumefaciens in transformed conifers.
    Charity JA; Klimaszewska K
    Environ Biosafety Res; 2005; 4(3):167-77. PubMed ID: 16634222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced soybean infection by the legume "super-virulent" Agrobacterium tumefaciens strain KAT23.
    Yukawa K; Kaku H; Tanaka H; Koga-Ban Y; Fukuda M
    Biosci Biotechnol Biochem; 2008 Jul; 72(7):1809-16. PubMed ID: 18603788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rapid and stable Agrobacterium-mediated transformation method of a medicinal plant Chelone glabra L.
    Gao Z; Li Y; Chen J; Chen Z; Cui ML
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2390-8. PubMed ID: 25492686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenotypic assay for excision of the maize controlling element Ac in tobacco.
    Baker B; Coupland G; Fedoroff N; Starlinger P; Schell J
    EMBO J; 1987 Jun; 6(6):1547-54. PubMed ID: 16453771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonary-node method.
    Olhoft PM; Flagel LE; Somers DA
    Plant Biotechnol J; 2004 Jul; 2(4):289-300. PubMed ID: 17134390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
    Grant JE; Cooper PA; Dale TM
    Plant Cell Rep; 2004 Jul; 22(12):894-902. PubMed ID: 14986058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.