These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16667163)

  • 61. C(4) Acid Metabolism and Dark CO(2) Fixation in a Submersed Aquatic Macrophyte (Hydrilla verticillata).
    Holaday AS; Bowes G
    Plant Physiol; 1980 Feb; 65(2):331-5. PubMed ID: 16661184
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus.
    Azedo-Silva J; Osório J; Fonseca F; Correia MJ
    Funct Plant Biol; 2004 Jul; 31(6):611-621. PubMed ID: 32688933
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of Nitrate and Ammonia on Photosynthetic Characteristics and Leaf Anatomy of Moricandia arvensis.
    Winter K; Usuda H; Tsuzuki M; Schmitt M; Edwards GE; Thomas RJ; Evert RF
    Plant Physiol; 1982 Aug; 70(2):616-25. PubMed ID: 16662544
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adaptations of Photosynthetic Electron Transport, Carbon Assimilation, and Carbon Partitioning in Transgenic Nicotiana plumbaginifolia Plants to Changes in Nitrate Reductase Activity.
    Foyer CH; Lescure JC; Lefebvre C; Morot-Gaudry JF; Vincentz M; Vaucheret H
    Plant Physiol; 1994 Jan; 104(1):171-178. PubMed ID: 12232070
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanism and importance of post-translational regulation of nitrate reductase.
    Lillo C; Meyer C; Lea US; Provan F; Oltedal S
    J Exp Bot; 2004 Jun; 55(401):1275-82. PubMed ID: 15107452
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves.
    Aslam M; Rosichan JL; Huffaker RC
    Plant Physiol; 1987; 83(3):579-84. PubMed ID: 11539032
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves.
    Hodges DM; Forney CF
    J Exp Bot; 2000 Mar; 51(344):645-55. PubMed ID: 10938820
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of obstructed translocation on leaf abscisic Acid, and associated stomatal closure and photosynthesis decline.
    Setter TL; Brun WA; Brenner ML
    Plant Physiol; 1980 Jun; 65(6):1111-5. PubMed ID: 16661342
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms.
    Ni BR; Pallardy SG
    Plant Physiol; 1992 Aug; 99(4):1502-8. PubMed ID: 16669065
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Carbon dioxide and nitrite photoassimilatory processes do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts.
    Robinson JM
    Plant Physiol; 1986 Mar; 80(3):676-84. PubMed ID: 16664684
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves.
    Douglas P; Morrice N; MacKintosh C
    FEBS Lett; 1995 Dec; 377(2):113-7. PubMed ID: 8543031
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate.
    Alt DS; Doyle JW; Malladi A
    J Plant Physiol; 2017 Sep; 216():79-87. PubMed ID: 28578080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spatial division of phosphoenolpyruvate carboxylase and nitrate reductase activity and its regulation by cytokinins in CAM-induced leaves of Guzmania monostachia (Bromeliaceae).
    Pereira PN; Purgatto E; Mercier H
    J Plant Physiol; 2013 Aug; 170(12):1067-74. PubMed ID: 23591079
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Antibodies to assess phosphorylation of spinach leaf nitrate reductase on serine 543 and its binding to 14-3-3 proteins.
    Weiner H; Kaiser WM
    J Exp Bot; 2001 Jun; 52(359):1165-72. PubMed ID: 11432934
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin.
    Moorhead G; Douglas P; Morrice N; Scarabel M; Aitken A; MacKintosh C
    Curr Biol; 1996 Sep; 6(9):1104-13. PubMed ID: 8805370
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inorganic Carbon Diffusion between C(4) Mesophyll and Bundle Sheath Cells: Direct Bundle Sheath CO(2) Assimilation in Intact Leaves in the Presence of an Inhibitor of the C(4) Pathway.
    Jenkins CL; Furbank RT; Hatch MD
    Plant Physiol; 1989 Dec; 91(4):1356-63. PubMed ID: 16667186
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance.
    Henry LT; Raper CD
    Bot Gaz; 1991 Mar; 152(1):23-33. PubMed ID: 11537089
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Steps towards an integrated view of nitrogen metabolism.
    Stitt M; Müller C; Matt P; Gibon Y; Carillo P; Morcuende R; Scheible WR; Krapp A
    J Exp Bot; 2002 Apr; 53(370):959-70. PubMed ID: 11912238
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Whole Leaf Carbon Exchange Characteristics of Phosphate Deficient Soybeans (Glycine max L.).
    Lauer MJ; Pallardy SG; Blevins DG; Randall DD
    Plant Physiol; 1989 Nov; 91(3):848-54. PubMed ID: 16667147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Effects of nitrate nitrogen supply on the growth, photosynthetic characteristics and
    Peng L; Liu JJ; Wang F; Ge SF; Jiang YM
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):522-530. PubMed ID: 29692067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.