BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16667233)

  • 1. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles.
    Martinoia E; Thume M; Vogt E; Rentsch D; Dietz KJ
    Plant Physiol; 1991 Oct; 97(2):644-50. PubMed ID: 16668447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute transport across the tonoplast of barely mesophyll vacuoles: Mg2+ determines the specificity, and ATP lipophilic amino acids the activity of the amino acid carrier.
    Dietz KJ; Klughammer B; Lang B; Thume M
    J Membr Biol; 1994 Jan; 137(2):151-8. PubMed ID: 8006953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine uptake into barley mesophyll vacuoles is regulated but not energized by ATP.
    Goerlach J; Willms-Hoff I
    Plant Physiol; 1992 May; 99(1):134-9. PubMed ID: 16668840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of the tonoplast amino-acid carrier into liposomes : Evidence for an ATP-regulated carrier in different species.
    Thume M; Dietz KJ
    Planta; 1991 Nov; 185(4):569-75. PubMed ID: 24186536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves.
    Rautenkranz A; Li L; Machler F; Martinoia E; Oertli JJ
    Plant Physiol; 1994 Sep; 106(1):187-193. PubMed ID: 12232318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of anions in isolated barley vacuoles : I. Permeability to anions and evidence for a cl-uptake system.
    Martinoia E; Schramm MJ; Kaiser G; Kaiser WM; Heber U
    Plant Physiol; 1986 Apr; 80(4):895-901. PubMed ID: 16664738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+.
    Dietz KJ; Lang M; Schönrock M; Zink C
    Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of Phenylalanine into Isolated Barley Vacuoles Is Driven by Both Tonoplast Adenosine Triphosphatase and Pyrophosphatase : Evidence for a Hydrophobic l-Amino Acid Carrier System.
    Homeyer U; Litek K; Huchzermeyer B; Schultz G
    Plant Physiol; 1989 Apr; 89(4):1388-93. PubMed ID: 16666714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of phenylalanine into vacuoles isolated from barley mesophyll protoplasts.
    Homeyer U; Schultz G
    Planta; 1988 Dec; 176(3):378-82. PubMed ID: 24220866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct energization of bile acid transport into plant vacuoles.
    Hörtensteiner S; Vogt E; Hagenbuch B; Meier PJ; Amrhein N; Martinoia E
    J Biol Chem; 1993 Sep; 268(25):18446-9. PubMed ID: 8360146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles.
    Ramos MS; Abele R; Nagy R; Grotemeyer MS; Tampé R; Rentsch D; Martinoia E
    J Exp Bot; 2011 Apr; 62(7):2403-10. PubMed ID: 21282327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity.
    Rentsch D; Martinoia E
    Planta; 1991 Jul; 184(4):532-7. PubMed ID: 24194244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic compartmentation of vacuolar amino acids in Penicillium cyclopium. Cytosolic adenylates act as a control signal for efflux into the cytosol.
    Roos W; Schulze R; Steighardt J
    J Biol Chem; 1997 Jun; 272(25):15849-55. PubMed ID: 9188483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.