These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 16667430)
21. Mitochondrial Respiration Can Support NO(3) and NO(2) Reduction during Photosynthesis : Interactions between Photosynthesis, Respiration, and N Assimilation in the N-Limited Green Alga Selenastrum minutum. Weger HG; Turpin DH Plant Physiol; 1989 Feb; 89(2):409-15. PubMed ID: 16666557 [TBL] [Abstract][Full Text] [Related]
22. Metabolic control of hepatic gluconeogenesis during exercise. Dohm GL; Newsholme EA Biochem J; 1983 Jun; 212(3):633-9. PubMed ID: 6224482 [TBL] [Abstract][Full Text] [Related]
23. Dark Ammonium Assimilation Reduces the Plastoquinone Pool of Photosystem II in the Green Alga Selenastrum minutum. Mohanty N; Bruce D; Turpin DH Plant Physiol; 1991 Jun; 96(2):513-7. PubMed ID: 16668216 [TBL] [Abstract][Full Text] [Related]
24. Steady-State Chlorophyll a Fluorescence Transients during Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum. Turpin DH; Weger HG Plant Physiol; 1988 Sep; 88(1):97-101. PubMed ID: 16666285 [TBL] [Abstract][Full Text] [Related]
25. RuBP Limitation of Photosynthetic Carbon Fixation during NH(3) Assimilation : Interactions between Photosynthesis, Respiration, and Ammonium Assimilation in N-Limited Green Algae. Elrifi IR; Holmes JJ; Weger HG; Mayo WP; Turpin DH Plant Physiol; 1988 Jun; 87(2):395-401. PubMed ID: 16666153 [TBL] [Abstract][Full Text] [Related]
26. Demonstration of Both a Photosynthetic and a Nonphotosynthetic CO(2) Requirement for NH(4) Assimilation in the Green Alga Selenastrum minutum. Amory AM; Vanlerberghe GC; Turpin DH Plant Physiol; 1991 Jan; 95(1):192-6. PubMed ID: 16667950 [TBL] [Abstract][Full Text] [Related]
27. The Path of Carbon Flow during NO(3)-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum. Elrifi IR; Turpin DH Plant Physiol; 1987 Jan; 83(1):97-104. PubMed ID: 16665223 [TBL] [Abstract][Full Text] [Related]
28. Effect of pentobarbital on fructose 2,6-bisphosphate metabolism in isolated rat hepatocytes. Nyfeler F; el-Maghrabi MR; Pilkis SJ Am J Physiol; 1985 Nov; 249(5 Pt 1):E525-33. PubMed ID: 2998199 [TBL] [Abstract][Full Text] [Related]
29. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase. Schellenberger W; Eschrich K; Hofmann E Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456 [TBL] [Abstract][Full Text] [Related]
30. Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate. Wimhurst JM; Manchester KL Biochem J; 1973 May; 134(1):143-56. PubMed ID: 4353083 [TBL] [Abstract][Full Text] [Related]
31. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels. Argaud D; Lange AJ; Becker TC; Okar DA; el-Maghrabi MR; Newgard CB; Pilkis SJ J Biol Chem; 1995 Oct; 270(41):24229-36. PubMed ID: 7592629 [TBL] [Abstract][Full Text] [Related]
32. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
33. Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. Claus TH; El-Maghrabi MR; Pilkis SJ J Biol Chem; 1979 Aug; 254(16):7855-64. PubMed ID: 468793 [TBL] [Abstract][Full Text] [Related]
34. Carbon Partitioning during Sucrose Accumulation in Sugarcane Internodal Tissue. Whittaker A; Botha FC Plant Physiol; 1997 Dec; 115(4):1651-1659. PubMed ID: 12223886 [TBL] [Abstract][Full Text] [Related]
35. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation. Vanlerberghe GC; Horsey AK; Weger HG; Turpin DH Plant Physiol; 1989 Dec; 91(4):1551-7. PubMed ID: 16667215 [TBL] [Abstract][Full Text] [Related]
36. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics. Pilkis SJ; el-Maghrabi MR; Claus TH Diabetes Care; 1990 Jun; 13(6):582-99. PubMed ID: 2162755 [TBL] [Abstract][Full Text] [Related]
38. Properties of phosphofructokinase from the mucosa of rat jejunum and their relation to the lack of Pasteur effect. Tejwani GA; Ramaiah A Biochem J; 1971 Nov; 125(2):507-14. PubMed ID: 4259410 [TBL] [Abstract][Full Text] [Related]
39. Fructose-2,6-bisphosphate, metabolites and 'coarse' control of pyrophosphate: fructose-6-phosphate phosphotransferase during triose-phosphate cycling in heterotrophic cell-suspension cultures of Chenopodium rubrum. Hatzfeld WD; Dancer J; Stitt M Planta; 1990 Jan; 180(2):205-11. PubMed ID: 24201946 [TBL] [Abstract][Full Text] [Related]
40. AMP deaminase reaction as a control system of glycolysis in yeast. Activation of phosphofructokinase and pyruvate kinase by the AMP deaminase-ammonia system. Yoshino M; Murakami K J Biol Chem; 1982 Mar; 257(6):2822-8. PubMed ID: 6460763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]