These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16667501)

  • 1. Effects of CO(2)-Enrichment and of Aminoacetonitrile on Growth and Photosynthesis of Photoautotrophic Calli of Nicotiana plumbaginifolia.
    Rey P; Eymery F; Peltier G
    Plant Physiol; 1990 Jun; 93(2):549-54. PubMed ID: 16667501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aminoacetonitrile on net photosynthesis, ribulose-1,5-bisphosphate levels, and glycolate pathway intermediates.
    Créach E; Stewart CR
    Plant Physiol; 1982 Nov; 70(5):1444-8. PubMed ID: 16662695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photorespiratory Properties of Mesophyll Protoplasts of Nicotiana plumbaginifolia.
    Rey P; Peltier G
    Plant Physiol; 1989 Mar; 89(3):762-7. PubMed ID: 16666618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Regulation of Photosynthesis in Leaves of Field-Grown Spring Wheat (Triticum aestivum L., cv Albis) at Different Levels of Ozone in Ambient Air.
    Lehnherr B; Mächler F; Grandjean A; Fuhrer J
    Plant Physiol; 1988 Dec; 88(4):1115-9. PubMed ID: 16666430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Glyoxylate on the Sensitivity of Net Photosynthesis to Oxygen (the Warburg Effect) in Tobacco.
    Oliver DJ
    Plant Physiol; 1978 Dec; 62(6):938-40. PubMed ID: 16660644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis and Growth of Water Hyacinth under CO(2) Enrichment.
    Spencer W; Bowes G
    Plant Physiol; 1986 Oct; 82(2):528-33. PubMed ID: 16665063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment and characterization of photoautotrophic protoplast-derived cultures ofNicotiana plumbaginifolia.
    Rey P; Eymery F; Peltier G; Silvy A
    Plant Cell Rep; 1989 Apr; 8(4):234-7. PubMed ID: 24233145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic characterization of photoautotrophic cells cultured in a minimal medium.
    Goldstein CS; Widholm JM
    Plant Physiol; 1990 Dec; 94(4):1641-6. PubMed ID: 16667897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular concentrations and metabolism of carbon compounds in tobacco callus cultures: effects of light and auxin.
    Lawyer AL; Grady KL; Bassham JA
    Plant Physiol; 1981 Oct; 68(4):857-64. PubMed ID: 16662013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photorespiration-induced reduction of ribulose bisphosphate carboxylase activation level.
    Chastain CJ; Ogren WL
    Plant Physiol; 1985 Apr; 77(4):851-6. PubMed ID: 16664149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CO(2) Concentration on Rubisco Activity, Amount, and Photosynthesis in Soybean Leaves.
    Campbell WJ; Allen LH; Bowes G
    Plant Physiol; 1988 Dec; 88(4):1310-6. PubMed ID: 16666460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation of Two Tomato Species to High Atmospheric CO(2): II. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Phosphoenolpyruvate Carboxylase.
    Yelle S; Beeson RC; Trudel MJ; Gosselin A
    Plant Physiol; 1989 Aug; 90(4):1473-7. PubMed ID: 16666953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light and CO(2) Response of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activation in Arabidopsis Leaves.
    Salvucci ME; Portis AR; Ogren WL
    Plant Physiol; 1986 Mar; 80(3):655-9. PubMed ID: 16664680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation to High CO(2) in Monoecious Cucumbers : II. Carbon Exchange Rates, Enzyme Activities, and Starch and Nutrient Concentrations.
    Peet MM; Huber SC; Patterson DT
    Plant Physiol; 1986 Jan; 80(1):63-7. PubMed ID: 16664608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of Ribulose Bisphosphate Carboxylase/Oxygenase Content, Ribulose Bisphosphate Concentration, and Photosynthetic Activity during Adaptation of High-CO(2) Grown Cells to Low-CO(2) Conditions in Chlorella pyrenoidosa.
    Yokota A; Canvin DT
    Plant Physiol; 1986 Feb; 80(2):341-5. PubMed ID: 16664623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii.
    Moroney JV; Wilson BJ; Tolbert NE
    Plant Physiol; 1986 Nov; 82(3):821-6. PubMed ID: 16665116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen and Carbon Dioxide Effects on the Pool Size of Some Photosynthetic and Photorespiratory Intermediates in Soybean (Glycine max [L.] Merr.).
    Hitz WD; Stewart CR
    Plant Physiol; 1980 Mar; 65(3):442-6. PubMed ID: 16661209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Levels of Intermediates of the C(4) Cycle and Reductive Pentose Phosphate Pathway under Various Light Intensities in Maize Leaves.
    Usuda H
    Plant Physiol; 1987 Jun; 84(2):549-54. PubMed ID: 16665477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Effects on the in Vivo Activity of Ribulose-Bisphosphate Carboxylase/Oxygenase during Development of Mn Toxicity in Tobacco.
    Houtz RL; Nable RO; Cheniae GM
    Plant Physiol; 1988 Apr; 86(4):1143-9. PubMed ID: 16666046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.