These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16667557)

  • 1. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism.
    Hugly S; McCourt P; Browse J; Patterson GW; Somerville C
    Plant Physiol; 1990 Jul; 93(3):1053-62. PubMed ID: 16667557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature.
    Zbierzak AM; Porfirova S; Griebel T; Melzer M; Parker JE; Dörmann P
    Plant J; 2013 Aug; 75(4):539-52. PubMed ID: 23617639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis.
    Wang Y; Zhang Y; Wang Z; Zhang X; Yang S
    Plant J; 2013 Aug; 75(4):553-65. PubMed ID: 23651299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures.
    Provart NJ; Gil P; Chen W; Han B; Chang HS; Wang X; Zhu T
    Plant Physiol; 2003 Jun; 132(2):893-906. PubMed ID: 12805619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylglycerol Composition Is Central to Chilling Damage in the Arabidopsis
    Gao J; Lunn D; Wallis JG; Browse J
    Plant Physiol; 2020 Dec; 184(4):1717-1730. PubMed ID: 33028639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination.
    Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR
    Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants.
    Campos PS; Quartin V; Ramalho JC; Nunes MA
    J Plant Physiol; 2003 Mar; 160(3):283-92. PubMed ID: 12749085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance.
    Gao J; Wallis JG; Jewell JB; Browse J
    Plant Physiol; 2017 Jul; 174(3):1713-1727. PubMed ID: 28495891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants.
    Murata N; Yamaya J
    Plant Physiol; 1984 Apr; 74(4):1016-24. PubMed ID: 16663496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress.
    Shahzad R; Ahmed F; Wang Z; Harlina PW; Nishawy E; Ayaad M; Manan A; Maher M; Ewas M
    J Genet Eng Biotechnol; 2020 Nov; 18(1):77. PubMed ID: 33245438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated Levels of High-Melting-Point Phosphatidylglycerols Do Not Induce Chilling Sensitivity in an Arabidopsis Mutant.
    Wu J; Browse J
    Plant Cell; 1995 Jan; 7(1):17-27. PubMed ID: 12242349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.
    Tokuhisa JG; Vijayan P; Feldmann KA; Browse JA
    Plant Cell; 1998 May; 10(5):699-711. PubMed ID: 9596631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Sterol Content in Membranes by Subcellular Compartmentation of Steryl-Esters Accumulating in a Sterol-Overproducing Tobacco Mutant.
    Gondet L; Bronner R; Benveniste P
    Plant Physiol; 1994 Jun; 105(2):509-518. PubMed ID: 12232218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.
    Harvaux M; Kloppstech K
    Planta; 2001 Oct; 213(6):953-66. PubMed ID: 11722132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.
    Mishra MK; Singh G; Tiwari S; Singh R; Kumari N; Misra P
    Plant Signal Behav; 2015; 10(12):e1075682. PubMed ID: 26382564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress.
    Qu T; Liu R; Wang W; An L; Chen T; Liu G; Zhao Z
    Cryobiology; 2011 Oct; 63(2):111-7. PubMed ID: 21819976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of Altitudinal Ecotypes of the Wild Tomato Lycopersicon hirsutum to Chilling Injury.
    Raison JK; Brown MA
    Plant Physiol; 1989 Dec; 91(4):1471-5. PubMed ID: 16667203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.
    Ploier B; Korber M; Schmidt C; Koch B; Leitner E; Daum G
    Biochim Biophys Acta; 2015 Jul; 1851(7):977-86. PubMed ID: 25720564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.
    Zheng G; Li L; Li W
    BMC Plant Biol; 2016 Mar; 16():70. PubMed ID: 27000868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cucumber (
    Liu X; Liu B; Xue S; Cai Y; Qi W; Jian C; Xu S; Wang T; Ren H
    Front Plant Sci; 2016; 7():1652. PubMed ID: 27891134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.