These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16667748)

  • 41. The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants.
    Camilleri C; Jouanin L
    Mol Plant Microbe Interact; 1991; 4(2):155-62. PubMed ID: 1932811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic transformation of Pueraria phaseoloides with Agrobacterium rhizogenes and puerarin production in hairy roots.
    Shi HP; Kintzios S
    Plant Cell Rep; 2003 Jul; 21(11):1103-7. PubMed ID: 12836005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes.
    Hoshino Y; Mii M
    Plant Cell Rep; 1998 Feb; 17(4):256-261. PubMed ID: 30736602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transformation of Catalpa ovata by Agrobacterium rhizogenes and phenylethanoid glycosides production in transformed root cultures.
    Wysokińska H; Lisowska K; Floryanowicz-Czekalska K
    Z Naturforsch C J Biosci; 2001; 56(5-6):375-81. PubMed ID: 11421453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elite hairy roots of
    Balasubramanian M; Anbumegala M; Surendran R; Arun M; Shanmugam G
    3 Biotech; 2018 Feb; 8(2):128. PubMed ID: 29450118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Trachyspermum ammi L. for the efficient production of thymol.
    Vamenani R; Pakdin-Parizi A; Mortazavi M; Gholami Z
    Biotechnol Appl Biochem; 2020 May; 67(3):389-395. PubMed ID: 31891201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation.
    Fu L; Wang M; Han B; Tan D; Sun X; Zhang J
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hairy root transformation in alfalfa (Medicago sativa L.).
    Spanò L; Mariotti D; Pezzotti M; Damiani F; Arcioni S
    Theor Appl Genet; 1987 Feb; 73(4):523-30. PubMed ID: 24241108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of Naphthaleneacetic Acid-Induced Rhizogenesis in T(L)-DNA-Transformed Brassica napus without Significant Modification of Auxin Levels and Auxin Sensitivity.
    Julliard J; Sotta B; Pelletier G; Miginiac E
    Plant Physiol; 1992 Nov; 100(3):1277-82. PubMed ID: 16653117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size.
    Tinland B; Rohfritsch O; Michler P; Otten L
    Mol Gen Genet; 1990 Aug; 223(1):1-10. PubMed ID: 2259331
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crown gall disease and hairy root disease : a sledgehammer and a tackhammer.
    Gelvin SB
    Plant Physiol; 1990 Feb; 92(2):281-5. PubMed ID: 16667272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of growth, exogenous auxin sensitivity, and endogenous indole-3-acetic acid content in roots of Hordeum vulgare L. and an agravitropic mutant.
    Tagliani L; Nissen S; Blake TK
    Biochem Genet; 1986 Dec; 24(11-12):839-48. PubMed ID: 3800869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Factors influencing induction and in vitro culture of hairy roots in Phytolacca americana L.].
    Shi H; Zhu Y; Tsang PKE; Chow CFS; Yu Z; Huang S
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):272-283. PubMed ID: 28956383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Analysis of Growth Regulator Interactions and Gene Expression during Auxin-Induced Cell Elongation Using Cloned Complementary DNAs to Auxin-Responsive Messenger RNAs.
    Walker JC; Legocka J; Edelman L; Key JL
    Plant Physiol; 1985 Apr; 77(4):847-50. PubMed ID: 16664148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.
    Nemoto K; Hara M; Goto S; Kasai K; Seki H; Suzuki M; Oka A; Muranaka T; Mano Y
    J Plant Physiol; 2009 May; 166(7):729-38. PubMed ID: 18986729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Stable
    Cui ML; Liu C; Piao CL; Liu CL
    Front Plant Sci; 2020; 11():604255. PubMed ID: 33381137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4.
    Zhou ML; Zhu XM; Shao JR; Wu YM; Tang YX
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1674-84. PubMed ID: 22328251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs.
    Fründt C; Meyer AD; Ichikawa T; Meins F
    Mol Gen Genet; 1998 Oct; 259(6):559-68. PubMed ID: 9819048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hairy root production in Arabidopsis thaliana: cotransformation with a promoter-trap vector results in complex T-DNA integration patterns.
    Karimi M; Van Montagu M; Gheysen G
    Plant Cell Rep; 1999 Dec; 19(2):133-142. PubMed ID: 30754738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frequent spontaneous deletions of Ri T-DNA in Agrobacterium rhizogenes transformed potato roots and regenerated plants.
    Hänisch ten Cate CH; Loonen AE; Ottaviani MP; Ennik L; van Eldik G; Stiekema WJ
    Plant Mol Biol; 1990 May; 14(5):735-41. PubMed ID: 1966386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.