These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16667771)

  • 1. Glycine-Glomus-Bradyrhizobium Symbiosis : X. Relationships between Leaf Gas Exchange and Plant and Soil Water Status in Nodulated, Mycorrhizal Soybean under Drought Stress.
    Bethlenfalvay GJ; Brown MS; Franson RL
    Plant Physiol; 1990 Oct; 94(2):723-8. PubMed ID: 16667771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine-Glomus-Rhizobium Symbiosis: V. Effects of Mycorrhiza on Nodule Activity and Transpiration in Soybeans under Drought Stress.
    Bethlenfalvay GJ; Brown MS; Mihara KL; Stafford AE
    Plant Physiol; 1987 Sep; 85(1):115-9. PubMed ID: 16665641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine-Glomus-Rhizobium Symbiosis : VI. Photosynthesis in Nodulated, Mycorrhizal, or N- and P-Fertilized Soybean Plants.
    Brown MS; Bethlenfalvay GJ
    Plant Physiol; 1987 Sep; 85(1):120-3. PubMed ID: 16665642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light effects in mycorrhizal soybeans.
    Bethlenfalvay GJ; Pacovsky RS
    Plant Physiol; 1983 Dec; 73(4):969-72. PubMed ID: 16663353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine-Glomus-Rhizobium Symbiosis: II. Antagonistic Effects between Mycorrhizal Colonization and Nodulation.
    Bethlenfalvay GJ; Brown MS; Stafford AE
    Plant Physiol; 1985 Dec; 79(4):1054-8. PubMed ID: 16664528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Glycine-Glomus-Rhizobium Symbiosis : VII. Photosynthetic Nutrient-Use Efficiency in Nodulated, Mycorrhizal Soybeans.
    Brown MS; Bethlenfalvay GJ
    Plant Physiol; 1988 Apr; 86(4):1292-7. PubMed ID: 16666069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses.
    Ruiz-Lozano JM; Azcon R; Gomez M
    Appl Environ Microbiol; 1995 Feb; 61(2):456-60. PubMed ID: 16534929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency.
    McArthur D; Knowles NR
    Plant Physiol; 1993 Jan; 101(1):147-160. PubMed ID: 12231674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WATER RELATIONS OF MYCORRHIZAL AND PHOSPHORUS-FERTILIZED NON-MYCORRHIZAL CITRUS UNDER DROUGHT STRESS.
    Graham JH; Syvertsen JP; Smith ML
    New Phytol; 1987 Mar; 105(3):411-419. PubMed ID: 33873912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Species of Vesicular-Arbuscular Mycorrhizal Fungi and Phosphorus Nutrition on Growth, Development, and Mineral Nutrition of Potato (Solanum tuberosum L.).
    McArthur D; Knowles NR
    Plant Physiol; 1993 Jul; 102(3):771-782. PubMed ID: 12231865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of citrus leaves.
    Syvertsen JP; Graham JH
    Plant Physiol; 1990 Nov; 94(3):1424-8. PubMed ID: 16667848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L. cv. 'Ferdy' is independent of leaf elemental content.
    Henderson JC; Davies FT
    New Phytol; 1990 Jul; 115(3):503-510. PubMed ID: 33874273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P; Botía P; Keller M
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought-Tolerant Bacteria and Arbuscular Mycorrhizal Fungi Mitigate the Detrimental Effects of Drought Stress Induced by Withholding Irrigation at Critical Growth Stages of Soybean (
    Nader AA; Hauka FIA; Afify AH; El-Sawah AM
    Microorganisms; 2024 May; 12(6):. PubMed ID: 38930505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus.
    Bryla DR; Duniway JM
    New Phytol; 1997 Aug; 136(4):581-590. PubMed ID: 33863112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions.
    Sánchez-Blanco MJ; Ferrández T; Morales MA; Morte A; Alarcón JJ
    J Plant Physiol; 2004 Jun; 161(6):675-82. PubMed ID: 15266714
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Le Pioufle O; Ganoudi M; Calonne-Salmon M; Ben Dhaou F; Declerck S
    Front Plant Sci; 2019; 10():897. PubMed ID: 31379895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.
    McArthur DA; Knowles NR
    Plant Physiol; 1992 Sep; 100(1):341-51. PubMed ID: 16652967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil.
    Roldán A; Díaz-Vivancos P; Hernández JA; Carrasco L; Caravaca F
    J Plant Physiol; 2008 May; 165(7):715-22. PubMed ID: 17913291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.