These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 16667793)
1. Purification of a beta-Amylase that Accumulates in Arabidopsis thaliana Mutants Defective in Starch Metabolism. Monroe JD; Preiss J Plant Physiol; 1990 Nov; 94(3):1033-9. PubMed ID: 16667793 [TBL] [Abstract][Full Text] [Related]
2. Altered regulation of beta-amylase activity in mutants of Arabidopsis with lesions in starch metabolism. Caspar T; Lin TP; Monroe J; Bernhard W; Spilatro S; Preiss J; Somerville C Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5830-3. PubMed ID: 16594057 [TBL] [Abstract][Full Text] [Related]
3. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Zeeman SC; Northrop F; Smith AM; Rees T Plant J; 1998 Aug; 15(3):357-65. PubMed ID: 9750347 [TBL] [Abstract][Full Text] [Related]
4. Starch Degradation in Spinach Leaves: ISOLATION AND CHARACTERIZATION OF THE AMYLASES AND R-ENZYME OF SPINACH LEAVES. Okita TW; Preiss J Plant Physiol; 1980 Nov; 66(5):870-6. PubMed ID: 16661544 [TBL] [Abstract][Full Text] [Related]
5. Purification and Characterization of Pea Epicotyl beta-Amylase. Lizotte PA; Henson CA; Duke SH Plant Physiol; 1990 Mar; 92(3):615-21. PubMed ID: 16667324 [TBL] [Abstract][Full Text] [Related]
6. Negative regulation in the expression of a sugar-inducible gene in Arabidopsis thaliana. A recessive mutation causing enhanced expression of a gene for beta-amylase. Mita S; Hirano H; Nakamura K Plant Physiol; 1997 Jun; 114(2):575-82. PubMed ID: 9193090 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation. Li J; Zhou W; Francisco P; Wong R; Zhang D; Smith SM PLoS One; 2017; 12(2):e0172504. PubMed ID: 28225829 [TBL] [Abstract][Full Text] [Related]
8. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana. Brauner K; Hörmiller I; Nägele T; Heyer AG Plant J; 2014 Jul; 79(1):82-91. PubMed ID: 24836712 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterisation of a new mutant allele of the plastid phosphoglucomutase in Arabidopsis, and complementation of the mutant with the wild-type cDNA. Kofler H; Häusler RE; Schulz B; Gröner F; Flügge UI; Weber A Mol Gen Genet; 2000 Jul; 263(6):978-86. PubMed ID: 10954083 [TBL] [Abstract][Full Text] [Related]
10. Starch Degradation and Distribution of the Starch-Degrading Enzymes in Vicia faba Leaves (Diurnal Oscillation of Amylolytic Activity and Starch Content in Chloroplasts). Ghiena C; Schulz M; Schnabl H Plant Physiol; 1993 Jan; 101(1):73-79. PubMed ID: 12231667 [TBL] [Abstract][Full Text] [Related]
11. alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Yu TS; Zeeman SC; Thorneycroft D; Fulton DC; Dunstan H; Lue WL; Hegemann B; Tung SY; Umemoto T; Chapple A; Tsai DL; Wang SM; Smith AM; Chen J; Smith SM J Biol Chem; 2005 Mar; 280(11):9773-9. PubMed ID: 15637061 [TBL] [Abstract][Full Text] [Related]
12. Alterations in Growth, Photosynthesis, and Respiration in a Starchless Mutant of Arabidopsis thaliana (L.) Deficient in Chloroplast Phosphoglucomutase Activity. Caspar T; Huber SC; Somerville C Plant Physiol; 1985 Sep; 79(1):11-7. PubMed ID: 16664354 [TBL] [Abstract][Full Text] [Related]
13. A Starchless Mutant of Nicotiana sylvestris Containing a Modified Plastid Phosphoglucomutase. Hanson KR; McHale NA Plant Physiol; 1988 Nov; 88(3):838-44. PubMed ID: 16666394 [TBL] [Abstract][Full Text] [Related]
14. Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Stitt M; Bulpin PV; ap Rees T Biochim Biophys Acta; 1978 Nov; 544(1):200-14. PubMed ID: 152656 [TBL] [Abstract][Full Text] [Related]
15. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Caspar T; Pickard BG Planta; 1989; 177():185-97. PubMed ID: 11539758 [TBL] [Abstract][Full Text] [Related]
16. Raw starch adsorption-desorption purification of a thermostable beta-amylase from Clostridium thermosulfurogenes. Saha BC; Lecureux LW; Zeikus JG Anal Biochem; 1988 Dec; 175(2):569-72. PubMed ID: 2467585 [TBL] [Abstract][Full Text] [Related]
17. Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Delvallé D; Dumez S; Wattebled F; Roldán I; Planchot V; Berbezy P; Colonna P; Vyas D; Chatterjee M; Ball S; Mérida A; D'Hulst C Plant J; 2005 Aug; 43(3):398-412. PubMed ID: 16045475 [TBL] [Abstract][Full Text] [Related]
18. Amylases in Pea Tissues with Reduced Chloroplast Density and/or Function. Saeed M; Duke SH Plant Physiol; 1990 Dec; 94(4):1813-9. PubMed ID: 16667921 [TBL] [Abstract][Full Text] [Related]
19. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein. Li J; Francisco P; Zhou W; Edner C; Steup M; Ritte G; Bond CS; Smith SM Arch Biochem Biophys; 2009 Sep; 489(1-2):92-8. PubMed ID: 19664588 [TBL] [Abstract][Full Text] [Related]
20. The ram1 mutant of Arabidopsis exhibits severely decreased beta-amylase activity. Laby RJ; Kim D; Gibson SI Plant Physiol; 2001 Dec; 127(4):1798-807. PubMed ID: 11743123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]