These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16667905)

  • 1. Cooperative regulation of cytoplasmic streaming and ca fluxes by pfr and photosynthesis in vallisneria mesophyll cells.
    Takagi S; Yamamoto KT; Furuya M; Nagai R
    Plant Physiol; 1990 Dec; 94(4):1702-8. PubMed ID: 16667905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-affected ca fluxes in protoplasts from vallisneria mesophyll cells.
    Takagi S; Nagai R
    Plant Physiol; 1988 Sep; 88(1):228-32. PubMed ID: 16666272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Proton Motive Force in Photoinduction of Cytoplasmic Streaming in
    Harada A; Okazaki Y; Kinoshita T; Nagai R; Takagi S
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32197471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of actin-dependent cytoplasmic motility by type II phytochrome occurs within seconds in Vallisneria gigantea epidermal cells.
    Takagi S; Kong SG; Mineyuki Y; Furuya M
    Plant Cell; 2003 Feb; 15(2):331-45. PubMed ID: 12566576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cytoplasmic streaming in Vallisneria mesophyll cells.
    Takagi S; Nagai R
    J Cell Sci; 1983 Jul; 62():385-405. PubMed ID: 6413519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells.
    Hale CC; Roux SJ
    Plant Physiol; 1980 Apr; 65(4):658-62. PubMed ID: 16661257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. I. Regulation of activity during light-induced membrane hyperpolarization.
    Harada A; Okazaki Y; Takagi S
    Planta; 2002 Apr; 214(6):863-9. PubMed ID: 11941462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats.
    Roux SJ; McEntire K; Slocum RD; Cedel TE; Hale CC
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):283-7. PubMed ID: 16592951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall-plasma membrane adhesion.
    Hayashi T; Takagi S
    Plant Cell Physiol; 2003 Oct; 44(10):1027-36. PubMed ID: 14581627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation by Pfr.
    Lamparter T; Marwan W
    Photochem Photobiol; 2001 Jun; 73(6):697-702. PubMed ID: 11421078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.
    Liebe S; Menzel D
    Biol Cell; 1995; 85(2-3):207-22. PubMed ID: 8785522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion flux interaction with cytoplasmic streaming in branchlets of Chara australis.
    Babourina O; Voltchanskii K; Newman I
    J Exp Bot; 2004 Dec; 55(408):2505-12. PubMed ID: 15361532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motile apparatus in Vallisneria leaf cells. I. Organization of microfilaments.
    Yamaguchi Y; Nagai R
    J Cell Sci; 1981 Apr; 48():193-205. PubMed ID: 6792210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium requirement of phytochrome-mediated fern-spore germination: No direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain.
    Scheuerlein R; Wayne R; Roux SJ
    Planta; 1989 May; 178(1):25-30. PubMed ID: 24212546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome-mediated uptake of calcium in Mougeotia cells.
    Dreyer EM; Weisenseel MH
    Planta; 1979 Jan; 146(1):31-9. PubMed ID: 24317943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts.
    Wang X; Iino M
    Plant Physiol; 1998 Aug; 117(4):1265-79. PubMed ID: 9701582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria.
    Ryu JH; Mizuno K; Takagi S; Nagai R
    Plant Cell Physiol; 1997 Apr; 38(4):420-32. PubMed ID: 9177028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.