BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 1666806)

  • 1. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of the mineral phase of calcifying cartilage.
    Rey C; Beshah K; Griffin R; Glimcher MJ
    J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites.
    Wu Y; Ackerman JL; Kim HM; Rey C; Barroug A; Glimcher MJ
    J Bone Miner Res; 2002 Mar; 17(3):472-80. PubMed ID: 11874238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures.
    Kuhn LT; Wu Y; Rey C; Gerstenfeld LC; Grynpas MD; Ackerman JL; Kim HM; Glimcher MJ
    J Bone Miner Res; 2000 Jul; 15(7):1301-9. PubMed ID: 10893678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the nature and composition of enamel mineral during porcine amelogenesis.
    Aoba T; Moreno EC
    Calcif Tissue Int; 1990 Dec; 47(6):356-64. PubMed ID: 1963381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, crystal chemistry and density of enamel apatites.
    Elliott JC
    Ciba Found Symp; 1997; 205():54-67; discussion 67-72. PubMed ID: 9189617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystallographic properties of the mineral phases of enamel and dentin in normal deciduous and permanent teeth.
    Zhao W; Wang S; Hong H; Chen Z; Fan M; Yu S
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2002 May; 37(3):219-21. PubMed ID: 12419150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite.
    Wilson RM; Elliott JC; Dowker SE; Rodriguez-Lorenzo LM
    Biomaterials; 2005 Apr; 26(11):1317-27. PubMed ID: 15475062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction.
    Roberts JE; Bonar LC; Griffin RG; Glimcher MJ
    Calcif Tissue Int; 1992 Jan; 50(1):42-8. PubMed ID: 1739869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The study on chemical composition and crystalline structure of hypoplastic primary dental enamel].
    Zheng S; Deng H; Gao X
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Nov; 32(6):366-8. PubMed ID: 11189313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.
    Simmons LM; Montgomery J; Beaumont J; Davis GR; Al-Jawad M
    Arch Oral Biol; 2013 Nov; 58(11):1726-34. PubMed ID: 24112740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of hydroxyl groups in dental apatites: a solid-state 1H MAS NMR study using inverse 31P -->1H cross-polarization.
    Kolmas J; Kolodziejski W
    Chem Commun (Camb); 2007 Nov; (42):4390-2. PubMed ID: 17957296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage calcification studied by proton nuclear magnetic resonance microscopy.
    Potter K; Leapman RD; Basser PJ; Landis WJ
    J Bone Miner Res; 2002 Apr; 17(4):652-60. PubMed ID: 11918222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment.
    Bohic S; Rey C; Legrand A; Sfihi H; Rohanizadeh R; Martel C; Barbier A; Daculsi G
    Bone; 2000 Apr; 26(4):341-8. PubMed ID: 10719276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated physiochemical and age changes in embryonic bovine enamel.
    Landis WJ; Navarro M
    Calcif Tissue Int; 1983; 35(1):48-55. PubMed ID: 6839190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.