BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 1666806)

  • 21. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High resolution electron microscopy of the initial mineral deposition on enamel surface.
    Hayashi Y
    J Electron Microsc (Tokyo); 1993 Oct; 42(5):342-5. PubMed ID: 8106855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.
    Bonewald LF; Harris SE; Rosser J; Dallas MR; Dallas SL; Camacho NP; Boyan B; Boskey A
    Calcif Tissue Int; 2003 May; 72(5):537-47. PubMed ID: 12724828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Influence of acid buffer on the crystallinity of enamel apatite].
    Sobue E
    Shoni Shikagaku Zasshi; 1989; 27(2):341-54. PubMed ID: 2562254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastructural and mineral phase characterization of the bone-like matrix assembled in F-OST osteoblast cultures.
    Querido W; Abraçado LG; Rossi AL; Campos AP; Rossi AM; San Gil RA; Borojevic R; Balduino A; Farina M
    Calcif Tissue Int; 2011 Nov; 89(5):358-71. PubMed ID: 21901516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta.
    Robinson C; Shore RC; Wood SR; Brookes SJ; Smith DA; Wright JT; Connell S; Kirkham J
    Connect Tissue Res; 2003; 44 Suppl 1():65-71. PubMed ID: 12952176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth.
    De Menezes Oliveira MA; Torres CP; Gomes-Silva JM; Chinelatti MA; De Menezes FC; Palma-Dibb RG; Borsatto MC
    Microsc Res Tech; 2010 May; 73(5):572-7. PubMed ID: 19937744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth.
    Mahoney EK; Rohanizadeh R; Ismail FS; Kilpatrick NM; Swain MV
    Biomaterials; 2004 Sep; 25(20):5091-100. PubMed ID: 15109872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals.
    Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K
    Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solubility of human enamel mineral.
    Moreno EC; Aoba T
    J Biol Buccale; 1990 Sep; 18(3):195-201. PubMed ID: 2174870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three layer structure model of fluoridated enamel containing CaF2, Ca(OH)2 and FAp.
    Gerth HU; Dammaschke T; Schäfer E; Züchner H
    Dent Mater; 2007 Dec; 23(12):1521-8. PubMed ID: 17353046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SnF2 treatment of enamel, hydroxyapatite or brushite at 37 degrees C and 50 degrees C: an infra-red investigation.
    Purdell-Lewis DJ; Arends J; Schuthof JA
    J Biol Buccale; 1979 Jun; 7(2):179-90. PubMed ID: 287670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation.
    Rey C; Renugopalakrishnan V; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):259-68. PubMed ID: 1760770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy.
    Laurencin D; Wong A; Chrzanowski W; Knowles JC; Qiu D; Pickup DM; Newport RJ; Gan Z; Duer MJ; Smith ME
    Phys Chem Chem Phys; 2010 Feb; 12(5):1081-91. PubMed ID: 20094673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of enamel with variable caries risk.
    Gutierrez P; Piña C; Lara VH; Bosch P
    Arch Oral Biol; 2005 Oct; 50(10):843-8. PubMed ID: 16023071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystalline structure of dental enamel after Ho:YLF laser irradiation.
    Bachmann L; Craievich AF; Zezell DM
    Arch Oral Biol; 2004 Nov; 49(11):923-9. PubMed ID: 15353249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.