These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16668125)

  • 1. Proline is not the primary determinant of chilling tolerance induced by mannitol or abscisic Acid in regenerable maize callus cultures.
    Duncan DR; Widholm JM
    Plant Physiol; 1991 Apr; 95(4):1284-7. PubMed ID: 16668125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline accumulation and its implication in cold tolerance of regenerable maize callus.
    Duncan DR; Widholm JM
    Plant Physiol; 1987 Mar; 83(3):703-8. PubMed ID: 16665311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Globulin-1 gene expression in regenerable Zea mays (maize) callus.
    Duncan DR; Kriz AL; Paiva R; Widholm JM
    Plant Cell Rep; 2003 Mar; 21(7):684-9. PubMed ID: 12789419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between Proline and Abscisic Acid in the Induction of Chilling Tolerance in Maize Suspension-Cultured Cells.
    Xin Z; Li PH
    Plant Physiol; 1993 Oct; 103(2):607-613. PubMed ID: 12231966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic Acid-induced chilling tolerance in maize suspension-cultured cells.
    Xin Z; Li PH
    Plant Physiol; 1992 Jun; 99(2):707-11. PubMed ID: 16668943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Growth, Water Relations, and Proline Accumulation in Sodium Sulfate Tolerant Callus of Brassica napus L. cv Westar (Canola).
    Chandler SF; Thorpe TA
    Plant Physiol; 1987 May; 84(1):106-11. PubMed ID: 16665381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures.
    Songstad DD; Duncan DR; Widholm JM
    Plant Cell Rep; 1988 Jun; 7(4):262-5. PubMed ID: 24241762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance.
    Anderson MD; Prasad TK; Martin BA; Stewart CR
    Plant Physiol; 1994 May; 105(1):331-339. PubMed ID: 12232205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes.
    Duncan DR; Williams ME; Zehr BE; Widholm JM
    Planta; 1985 Aug; 165(3):322-32. PubMed ID: 24241136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorbitol as the Primary Carbon Source for the Growth of Embryogenic Callus of Maize.
    Swedlund B; Locy RD
    Plant Physiol; 1993 Dec; 103(4):1339-1346. PubMed ID: 12232027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotype-specific differences in chilling tolerance of maize in relation to chilling-induced changes in water status and abscisic acid accumulation.
    Capell B; Dörffling K
    Physiol Plant; 1993 Aug; 88(4):638-646. PubMed ID: 28741763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of Gene Expression Associated with Abscisic Acid-Induced Chilling Tolerance in Maize Suspension-Cultured Cells.
    Xin Z; Li PH
    Plant Physiol; 1993 Jan; 101(1):277-284. PubMed ID: 12231683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased induction of regenerable callus cultures from cultured kernels of the maize inbred FR27rhm.
    Duncan DR; Singletary GW; Below FE; Widholm JM
    Plant Cell Rep; 1989 Jun; 8(6):350-3. PubMed ID: 24233273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings.
    Prasad TK; Anderson MD; Stewart CR
    Plant Physiol; 1994 Jun; 105(2):619-627. PubMed ID: 12232229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures.
    Duncan DR; Widholm JM
    J Plant Physiol; 2004 Apr; 161(4):397-403. PubMed ID: 15128027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Exogenous Abscisic Acid on Proline Dehydrogenase Activity in Maize (Zea mays L.).
    Dallmier KA; Stewart CR
    Plant Physiol; 1992 Jun; 99(2):762-4. PubMed ID: 16668952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Abscisic Acid on the Freezing Tolerance of Callus Cultures of Lotus corniculatus L.
    Keith CN; McKersie BD
    Plant Physiol; 1986 Mar; 80(3):766-70. PubMed ID: 16664699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline accumulation and sodium sulfate tolerance in callus cultures of Brassica napus L. cv. Westar.
    Chandler SF; Thorpe TA
    Plant Cell Rep; 1987 Jun; 6(3):176-9. PubMed ID: 24248644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Synergistic Priming Effect of Exogenous Salicylic Acid and H
    Li Z; Xu J; Gao Y; Wang C; Guo G; Luo Y; Huang Y; Hu W; Sheteiwy MS; Guan Y; Hu J
    Front Plant Sci; 2017; 8():1153. PubMed ID: 28725229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors Influencing the Induction of Freezing Tolerance by Abscisic Acid in Cell Suspension Cultures of Bromus inermis Leyss and Medicago sativa L.
    Reaney MJ; Gusta LV
    Plant Physiol; 1987 Feb; 83(2):423-7. PubMed ID: 16665261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.