BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16668182)

  • 21. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini.
    Martin D; Bohlmann J; Gershenzon J; Francke W; Seybold SJ
    Naturwissenschaften; 2003 Apr; 90(4):173-9. PubMed ID: 12712251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications.
    Arbellay E; Stoffel M; Sutherland EK; Smith KT; Falk DA
    Ann Bot; 2014 Aug; 114(2):223-32. PubMed ID: 24941999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosynthetic phenological variation may promote coexistence among co-dominant tree species in a Madrean sky island mixed conifer forest.
    Potts DL; Minor RL; Braun Z; Barron-Gafford GA
    Tree Physiol; 2017 Sep; 37(9):1229-1238. PubMed ID: 28938055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings.
    Turtola S; Manninen AM; Rikala R; Kainulainen P
    J Chem Ecol; 2003 Sep; 29(9):1981-95. PubMed ID: 14584671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.
    Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML
    Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extended Host Range of Agrobacterium tumefaciens in the Genus Pinus.
    Stomp AM; Loopstra C; Chilton WS; Sederoff RR; Moore LW
    Plant Physiol; 1990 Apr; 92(4):1226-32. PubMed ID: 16667394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Oleoresinosis in Grand Fir (Abies grandis) (Coordinate Induction of Monoterpene and Diterpene Cyclases and Two Cytochrome P450-Dependent Diterpenoid Hydroxylases by Stem Wounding).
    Funk C; Lewinsohn E; Vogel BS; Steele CL; Croteau R
    Plant Physiol; 1994 Nov; 106(3):999-1005. PubMed ID: 12232380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest.
    Rissanen K; Hölttä T; Vanhatalo A; Aalto J; Nikinmaa E; Rita H; Bäck J
    Plant Cell Environ; 2016 Mar; 39(3):527-38. PubMed ID: 26385487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oleoresinosis in Grand Fir (Abies grandis) Saplings and Mature Trees (Modulation of this Wound Response by Light and Water Stresses).
    Lewinsohn E; Gijzen M; Muzika RM; Barton K; Croteau R
    Plant Physiol; 1993 Mar; 101(3):1021-1028. PubMed ID: 12231755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of phloem girdling in conifers on apical control of branches, growth allocation and air in wood.
    Wilson BF; Gartner BL
    Tree Physiol; 2002 Apr; 22(5):347-53. PubMed ID: 11960759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Family differences in height growth and photosynthetic traits in three conifers.
    Marshall JD; Rehfeldt GE; Monserud RA
    Tree Physiol; 2001 Jul; 21(11):727-34. PubMed ID: 11470658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Southwestern Dwarf Mistletoe, Arceuthobium vaginatum subsp. cryptopodum, Found Parasitizing Picea pungens in Colorado.
    Mathiasen R; Marcus N
    Plant Dis; 2005 Jan; 89(1):106. PubMed ID: 30795295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil.
    George E; Seith B; Schaeffer C; Marschner H
    Tree Physiol; 1997 Jan; 17(1):39-45. PubMed ID: 14759912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation.
    Lundborg L; Nordlander G; Björklund N; Nordenhem H; Borg-Karlson AK
    J Chem Ecol; 2016 Dec; 42(12):1237-1246. PubMed ID: 27896555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce.
    Miller B; Madilao LL; Ralph S; Bohlmann J
    Plant Physiol; 2005 Jan; 137(1):369-82. PubMed ID: 15618433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase.
    Fäldt J; Martin D; Miller B; Rawat S; Bohlmann J
    Plant Mol Biol; 2003 Jan; 51(1):119-33. PubMed ID: 12602896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. cDNA isolation, functional expression, and characterization of (+)-alpha-pinene synthase and (-)-alpha-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis.
    Phillips MA; Wildung MR; Williams DC; Hyatt DC; Croteau R
    Arch Biochem Biophys; 2003 Mar; 411(2):267-76. PubMed ID: 12623076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.