These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation. Ober ES; Sharp RE J Exp Bot; 2003 Feb; 54(383):813-24. PubMed ID: 12554724 [TBL] [Abstract][Full Text] [Related]
24. The Relationship between Turgor Pressure Change and Cell Hydraulics of Midrib Parenchyma Cells in the Leaves of Zea mays. Kim YX; Stumpf B; Sung J; Lee SJ Cells; 2018 Oct; 7(10):. PubMed ID: 30360453 [TBL] [Abstract][Full Text] [Related]
25. Root Growth Maintenance at Low Water Potentials (Increased Activity of Xyloglucan Endotransglycosylase and Its Possible Regulation by Abscisic Acid). Wu Y; Spollen WG; Sharp RE; Hetherington PR; Fry SC Plant Physiol; 1994 Oct; 106(2):607-615. PubMed ID: 12232354 [TBL] [Abstract][Full Text] [Related]
26. Modification of expansin transcript levels in the maize primary root at low water potentials. Wu Y; Thorne ET; Sharp RE; Cosgrove DJ Plant Physiol; 2001 Aug; 126(4):1471-9. PubMed ID: 11500546 [TBL] [Abstract][Full Text] [Related]
27. Growth at reduced turgor: irreversible and reversible cell-wall extension of maize coleoptiles and its implications for the theory of cell growth. Hohl M; Schöpfer P Planta; 1992 May; 187(2):209-17. PubMed ID: 24178045 [TBL] [Abstract][Full Text] [Related]
28. The control of cell expansion in roots. Pritchard J New Phytol; 1994 May; 127(1):3-26. PubMed ID: 33874400 [TBL] [Abstract][Full Text] [Related]
29. Growth of the Maize Primary Root at Low Water Potentials : II. Role of Growth and Deposition of Hexose and Potassium in Osmotic Adjustment. Sharp RE; Hsiao TC; Silk WK Plant Physiol; 1990 Aug; 93(4):1337-46. PubMed ID: 16667622 [TBL] [Abstract][Full Text] [Related]
30. Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxin-mediated organ growth. Hohl M; Schopfer P Planta; 1992 Oct; 188(3):340-4. PubMed ID: 24178323 [TBL] [Abstract][Full Text] [Related]
31. Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.). Frensch J; Steudle E Plant Physiol; 1989 Oct; 91(2):719-26. PubMed ID: 16667092 [TBL] [Abstract][Full Text] [Related]
32. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress. Voothuluru P; Anderson JC; Sharp RE; Peck SC Plant Cell Environ; 2016 Sep; 39(9):2043-54. PubMed ID: 27341663 [TBL] [Abstract][Full Text] [Related]
33. Growth-induced water potentials originate from wall yielding during growth. Boyer JS J Exp Bot; 2001 Jul; 52(360):1483-8. PubMed ID: 11457908 [TBL] [Abstract][Full Text] [Related]
34. Water potentials induced by growth in soybean hypocotyls. Cavalieri AJ; Boyer JS Plant Physiol; 1982 Feb; 69(2):492-6. PubMed ID: 16662235 [TBL] [Abstract][Full Text] [Related]
35. Antioxidant Metabolism Underlies Different Metabolic Strategies for Primary Root Growth Maintenance under Water Stress in Cotton and Maize. Kang J; Voothuluru P; Hoyos-Miernyk E; Alexander D; Oliver MJ; Sharp RE Antioxidants (Basel); 2022 Apr; 11(5):. PubMed ID: 35624684 [TBL] [Abstract][Full Text] [Related]
36. Effects of NaCl and CaCl(2) on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings. Azaizeh H; Gunse B; Steudle E Plant Physiol; 1992 Jul; 99(3):886-94. PubMed ID: 16669016 [TBL] [Abstract][Full Text] [Related]
37. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. Spollen WG; Tao W; Valliyodan B; Chen K; Hejlek LG; Kim JJ; Lenoble ME; Zhu J; Bohnert HJ; Henderson D; Schachtman DP; Davis GE; Springer GK; Sharp RE; Nguyen HT BMC Plant Biol; 2008 Apr; 8():32. PubMed ID: 18387193 [TBL] [Abstract][Full Text] [Related]
38. Turgor and growth at low water potentials. Nonami H; Boyer JS Plant Physiol; 1989 Mar; 89(3):798-804. PubMed ID: 16666624 [TBL] [Abstract][Full Text] [Related]
39. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays. Kim YX; Steudle E J Exp Bot; 2007; 58(15-16):4119-29. PubMed ID: 18065766 [TBL] [Abstract][Full Text] [Related]
40. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Yamaguchi M; Sharp RE Plant Cell Environ; 2010 Apr; 33(4):590-603. PubMed ID: 19895398 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]