These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16668268)
1. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding. Suttle JC Plant Physiol; 1991 Jul; 96(3):875-80. PubMed ID: 16668268 [TBL] [Abstract][Full Text] [Related]
2. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Suttle JC Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386 [TBL] [Abstract][Full Text] [Related]
3. Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls. López Nicolás JI; Acosta M; Sánchez-Bravo J Physiol Plant; 2004 Jun; 121(2):294-304. PubMed ID: 15153197 [TBL] [Abstract][Full Text] [Related]
4. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Faulkner IJ; Rubery PH Planta; 1992 Mar; 186(4):618-25. PubMed ID: 24186794 [TBL] [Abstract][Full Text] [Related]
5. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls. Nicolás JI; Acosta M; Sánchez-Bravo J J Plant Physiol; 2007 Jul; 164(7):851-60. PubMed ID: 16904231 [TBL] [Abstract][Full Text] [Related]
6. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid. Sabater M; Rubery PH Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714 [TBL] [Abstract][Full Text] [Related]
7. Phytotropin-binding sites and auxin transport in Cucurbita pepo: evidence for two recognition sites. Michalke W; Katekar GF; Geissler AE Planta; 1992 May; 187(2):254-60. PubMed ID: 24178053 [TBL] [Abstract][Full Text] [Related]
8. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta. Dibb-Fuller JE; Morris DA Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661 [TBL] [Abstract][Full Text] [Related]
9. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312 [TBL] [Abstract][Full Text] [Related]
10. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron. Suttle JC Plant Physiol; 1988 Jan; 86(1):241-5. PubMed ID: 16665874 [TBL] [Abstract][Full Text] [Related]
11. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665 [TBL] [Abstract][Full Text] [Related]
12. Lateral diffusion of polarly transported indoleacetic acid and its role in the growth of Lupinus albus L. hypocotyls. Sánchez-Bravo J; Ortuno A; Botia JM; Acosta M; Sabater F Planta; 1991 Oct; 185(3):391-6. PubMed ID: 24186424 [TBL] [Abstract][Full Text] [Related]
13. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Rashotte AM; Brady SR; Reed RC; Ante SJ; Muday GK Plant Physiol; 2000 Feb; 122(2):481-90. PubMed ID: 10677441 [TBL] [Abstract][Full Text] [Related]
14. Auxin transport in membrane vesicles from Cucurbita pepo L. Hertel R; Lomax TL; Briggs WR Planta; 1983 Apr; 157(3):193-201. PubMed ID: 24264147 [TBL] [Abstract][Full Text] [Related]
15. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid. Johnson CF; Morris DA Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925 [TBL] [Abstract][Full Text] [Related]
16. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments. Depta H; Rubery PH J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793 [TBL] [Abstract][Full Text] [Related]
17. Insensitivity of the diageotropica tomato mutant to auxin. Kelly MO; Bradford KJ Plant Physiol; 1986 Nov; 82(3):713-7. PubMed ID: 16665098 [TBL] [Abstract][Full Text] [Related]
18. Polar Calcium Flux in Sunflower Hypocotyl Segments : II. The Effect of Segment Orientation, Growth, and Respiration. de Guzman CC; Dela Fuente RK Plant Physiol; 1986 Jun; 81(2):408-12. PubMed ID: 16664830 [TBL] [Abstract][Full Text] [Related]
19. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Morris DA; Johnson CF Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683 [TBL] [Abstract][Full Text] [Related]
20. Influence of 2,3,5-Triiodobenzoic Acid and 1-N-Naphthylphthalamic Acid on Indoleacetic Acid Transport in Carnation Cuttings: Relationship with Rooting. Guerrero JR; Garrido G; Acosta M; Sánchez-Bravo J J Plant Growth Regul; 1999 Dec; 18(4):183-190. PubMed ID: 10688708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]