BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16668326)

  • 1. Limitations of Photosynthesis in Pinus taeda L. (Loblolly Pine) at Low Soil Temperatures.
    Day TA; Heckathorn SA; Delucia EH
    Plant Physiol; 1991 Aug; 96(4):1246-54. PubMed ID: 16668326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions.
    Teskey RO; Fites JA; Samuelson LJ; Bongarten BC
    Tree Physiol; 1986 Dec; 2(1_2_3):131-142. PubMed ID: 14975848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.
    Dang QL; Margolis HA; Coyea MR; Sy M; Collatz GJ
    Tree Physiol; 1997; 17(8_9):521-535. PubMed ID: 14759825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.
    Urban J; Ingwers MW; McGuire MA; Teskey RO
    J Exp Bot; 2017 Mar; 68(7):1757-1767. PubMed ID: 28338959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings.
    Delucia EH
    Tree Physiol; 1986 Dec; 2(1_2_3):143-154. PubMed ID: 14975849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal conductance increases with rising temperature.
    Urban J; Ingwers M; McGuire MA; Teskey RO
    Plant Signal Behav; 2017 Aug; 12(8):e1356534. PubMed ID: 28786730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis and water relations of the floodplain tree, boxelder (Acer negundo L.).
    Foster JR
    Tree Physiol; 1992 Sep; 11(2):133-49. PubMed ID: 14969957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO(2) and temperature.
    Kellomäki S; Wang KY
    Tree Physiol; 1996 Sep; 16(9):765-72. PubMed ID: 14871683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis.
    Dewar R; Mauranen A; Mäkelä A; Hölttä T; Medlyn B; Vesala T
    New Phytol; 2018 Jan; 217(2):571-585. PubMed ID: 29086921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.
    Salmon Y; Lintunen A; Dayet A; Chan T; Dewar R; Vesala T; Hölttä T
    New Phytol; 2020 May; 226(3):690-703. PubMed ID: 31955422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.
    Dai Z; Edwards GE; Ku MS
    Plant Physiol; 1992 Aug; 99(4):1426-34. PubMed ID: 16669054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation.
    Domec JC; Noormets A; King JS; Sun G; McNulty SG; Gavazzi MJ; Boggs JL; Treasure EA
    Plant Cell Environ; 2009 Aug; 32(8):980-91. PubMed ID: 19344336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance.
    Melkonian J; Yu LX; Setter TL
    J Exp Bot; 2004 Aug; 55(403):1751-60. PubMed ID: 15235000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization.
    Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R
    Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Net CO(2) assimilation of cacao seedlings following dark chilling.
    Joly RJ; Hahn DT
    Tree Physiol; 1991 Oct; 9(3):415-24. PubMed ID: 14972851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.).
    Drake JE; Raetz LM; Davis SC; DeLucia EH
    Plant Cell Environ; 2010 Oct; 33(10):1756-66. PubMed ID: 20545880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes.
    Ellsworth DS; Reich PB
    Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato.
    Bunce JA
    Photosynth Res; 1988 Nov; 18(3):357-62. PubMed ID: 24425246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of soil temperature on stem sap flow, shoot gas exchange and water potential of Picea engelmannii (Parry) during snowmelt.
    Day TA; DeLucia EH; Smith WK
    Oecologia; 1990 Oct; 84(4):474-481. PubMed ID: 28312963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.