These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16668326)

  • 41. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.
    Greer DH; Wünsche JN; Norling CL; Wiggins HN
    Tree Physiol; 2006 Jan; 26(1):105-11. PubMed ID: 16203720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Growth, ectomycorrhizae and nonstructural carbohydrates of loblolly pine seedlings exposed to ozone and soil water deficit.
    Meier S; Grand LF; Schoeneberger MM; Reinert RA; Bruck RI
    Environ Pollut; 1990; 64(1):11-27. PubMed ID: 15092304
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks.
    Dewar R; Hölttä T; Salmon Y
    New Phytol; 2022 Jan; 233(2):639-654. PubMed ID: 34637543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands.
    Gonzalez-Benecke CA; Martin TA
    Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological girdling of pine trees via phloem chilling: proof of concept.
    Johnsen K; Maier C; Sanchez F; Anderson P; Butnor J; Waring R; Linder S
    Plant Cell Environ; 2007 Jan; 30(1):128-34. PubMed ID: 17177881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic response of stomata to changing irradiance in loblolly pine (Pinus taeda L.).
    Whitehead D; Teskey RO
    Tree Physiol; 1995 Apr; 15(4):245-51. PubMed ID: 14965964
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.
    Pallas JE; Michel BE; Harris DG
    Plant Physiol; 1967 Jan; 42(1):76-88. PubMed ID: 16656488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions.
    Pataki DE; Oren R; Katul G; Sigmon J
    Tree Physiol; 1998 May; 18(5):307-315. PubMed ID: 12651370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of soil flooding on leaf gas exchange of tomato plants.
    Bradford KJ
    Plant Physiol; 1983 Oct; 73(2):475-9. PubMed ID: 16663242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site.
    Ward EJ; Bell DM; Clark JS; Oren R
    Tree Physiol; 2013 Feb; 33(2):123-34. PubMed ID: 23192973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Root signalling and modulation of stomatal closure in flooded citrus seedlings.
    Rodríguez-Gamir J; Ancillo G; González-Mas MC; Primo-Millo E; Iglesias DJ; Forner-Giner MA
    Plant Physiol Biochem; 2011 Jun; 49(6):636-45. PubMed ID: 21459591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Negative effects of low root temperatures on water and carbon relations in temperate tree seedlings assessed by dual isotopic labelling.
    Wang W; Hoch G
    Tree Physiol; 2022 Jul; 42(7):1311-1324. PubMed ID: 35038338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments.
    Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ
    Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Boron nutrition and chilling tolerance of warm climate crop species.
    Huang L; Ye Z; Bell RW; Dell B
    Ann Bot; 2005 Oct; 96(5):755-67. PubMed ID: 16033777
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The response of foliar gas exchange to exogenously applied ethylene.
    Taylor GE; Gunderson CA
    Plant Physiol; 1986 Nov; 82(3):653-7. PubMed ID: 16665086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris.
    Addington RN; Mitchell RJ; Oren R; Donovan LA
    Tree Physiol; 2004 May; 24(5):561-9. PubMed ID: 14996660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.