These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16668333)

  • 1. Metabolic evidence for stelar anoxia in maize roots exposed to low o(2) concentrations.
    Thomson CJ; Greenway H
    Plant Physiol; 1991 Aug; 96(4):1294-301. PubMed ID: 16668333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging.
    Yamauchi T; Abe F; Tsutsumi N; Nakazono M
    Front Plant Sci; 2019; 10():259. PubMed ID: 31024577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring and interpreting respiratory critical oxygen pressures in roots.
    Armstrong W; Webb T; Darwent M; Beckett PM
    Ann Bot; 2009 Jan; 103(2):281-93. PubMed ID: 18819952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.
    Shimamura S; Yamamoto R; Nakamura T; Shimada S; Komatsu S
    Ann Bot; 2010 Aug; 106(2):277-84. PubMed ID: 20660468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency.
    Drew MC; Jackson MB; Giffard SC; Campbell R
    Planta; 1981 Nov; 153(3):217-24. PubMed ID: 24276824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of CCCP on ion fluxes in the stele and cortex of maize roots.
    Baker DA
    Planta; 1973 Dec; 112(4):293-9. PubMed ID: 24468809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen.
    Jackson MB; Fenning TM; Drew MC; Saker LR
    Planta; 1985 Sep; 165(4):486-92. PubMed ID: 24241221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial salt transport in corn roots.
    Yu GH; Kramer PJ
    Plant Physiol; 1967 Jul; 42(7):985-90. PubMed ID: 16656607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport in seminal and adventitious roots of cereals during O2 deficiency.
    Colmer TD; Greenway H
    J Exp Bot; 2011 Jan; 62(1):39-57. PubMed ID: 20847100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonosmotic Effects of Polyethylene Glycols upon Sodium Transport and Sodium-Potassium Selectivity by Rice Roots.
    Yeo AR; Flowers TJ
    Plant Physiol; 1984 Jun; 75(2):298-303. PubMed ID: 16663615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial transport of ions in roots.
    Yu GH; Kramer PJ
    Plant Physiol; 1969 Aug; 44(8):1095-100. PubMed ID: 16657173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerenchyma formation in roots of maize during sulphate starvation.
    Bouranis DL; Chorianopoulou SN; Siyiannis VF; Protonotarios VE; Hawkesford MJ
    Planta; 2003 Jul; 217(3):382-91. PubMed ID: 12728316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical Air Spaces (Aerenchyma) in Roots of Corn Subjected to Oxygen Stress: STRUCTURE AND INFLUENCE ON UPTAKE AND TRANSLOCATION OF RUBIDIUM IONS.
    Drew MC; Chamel A; Garrec JP; Fourcy A
    Plant Physiol; 1980 Mar; 65(3):506-11. PubMed ID: 16661224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L.
    Drew MC; Jackson MB; Giffard S
    Planta; 1979 Oct; 147(1):83-8. PubMed ID: 24310899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barriers to the radial diffusion of ions in maize roots.
    Baker DA
    Planta; 1971 Dec; 98(4):285-93. PubMed ID: 24493453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal and Nonstomatal Components to Inhibition of Photosynthesis in Leaves of Capsicum annuum during Progressive Exposure to NaCl Salinity.
    Bethke PC; Drew MC
    Plant Physiol; 1992 May; 99(1):219-26. PubMed ID: 16668853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide effects on ethanol production, pyruvate decarboxylase, and alcohol dehydrogenase activities in anaerobic sweet potato roots.
    Chang LA; Hammett LK; Pharr DM
    Plant Physiol; 1983 Jan; 71(1):59-62. PubMed ID: 16662798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for proteins specific for vascular elements in intact and cultured tissues and cells of maize.
    Khavkin EE; Markov EY; Misharin SI
    Planta; 1980 Mar; 148(2):116-23. PubMed ID: 24309698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the Uptake of Nitrate in Barley : II. Energetics.
    Glass AD; Siddiqi MY; Ruth TJ; Rufty TW
    Plant Physiol; 1990 Aug; 93(4):1585-9. PubMed ID: 16667660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.