These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16668427)

  • 1. Nonsedimentable microvesicles from senescing bean cotyledons contain gel phase-forming phospholipid degradation products.
    Yao K; Paliyath G; Thompson JE
    Plant Physiol; 1991 Oct; 97(2):502-8. PubMed ID: 16668427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of nonsedimentable lipid-protein microvesicles.
    Yao K; Paliyath G; Humphrey RW; Hallett FR; Thompson JE
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2269-73. PubMed ID: 11607164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of deteriosomes from rat liver.
    Yao K; Wu X; Thompson JE; Carlson JC
    J Cell Biochem; 1993 Apr; 51(4):488-94. PubMed ID: 8496249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase properties of senescing plant membranes: role of the neutral lipids.
    McKersie BD; Thompson JE
    Biochim Biophys Acta; 1979 Jan; 550(1):48-58. PubMed ID: 760791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of proteinase activity in deteriosomes, a new class of microvesicles.
    Yao K; Thompson JE
    FEBS Lett; 1993 May; 323(1-2):99-103. PubMed ID: 8495756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid crystallization in senescent membranes from cotyledons.
    McKersie BD; Thompson JE
    Plant Physiol; 1977 May; 59(5):803-7. PubMed ID: 16659947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-fracture evidence of gel-phase lipid in membranes of senescing cowpea cotyledons.
    Platt-Aloia KA; Thomson WW
    Planta; 1985 Mar; 163(3):360-9. PubMed ID: 24249407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cotyledon senescence on the composition and physical properties of membrane lipid.
    McKersie BD; Lepock JR; Kruuv J; Thompson JE
    Biochim Biophys Acta; 1978 Apr; 508(2):197-212. PubMed ID: 638142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium- and calmodulin-regulated breakdown of phospholipid by microsomal membranes from bean cotyledons.
    Paliyath G; Thompson JE
    Plant Physiol; 1987 Jan; 83(1):63-8. PubMed ID: 16665217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons.
    Pauls KP; Thompson JE
    Plant Physiol; 1984 Aug; 75(4):1152-7. PubMed ID: 16663749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional and physical properties of microsomal membrane lipids from regressing rat corpora lutea.
    Carlson JC; Buhr MM; Gruber MY; Thompson JE
    Endocrinology; 1981 Jun; 108(6):2124-8. PubMed ID: 7227301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol.
    Quinn PJ; Takahashi H; Hatta I
    Biophys J; 1995 Apr; 68(4):1374-82. PubMed ID: 7787023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of nonsedimentable lipid-protein particles from insect intestine.
    Desantis TA; Paliyath G; Thompson JE; Downer RG
    J Cell Physiol; 1995 Jun; 163(3):631-5. PubMed ID: 7775605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An X-ray diffraction study of the effect of alpha-tocopherol on the structure and phase behaviour of bilayers of dimyristoylphosphatidylethanolamine.
    Wang X; Takahashi H; Hatta I; Quinn PJ
    Biochim Biophys Acta; 1999 May; 1418(2):335-43. PubMed ID: 10320684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Number of microvesicles in peripheral blood and ability of plasma to induce adhesion between phospholipid membranes in 19 patients with gastrointestinal diseases.
    Jansa R; Sustar V; Frank M; Susanj P; Bester J; Mancek-Keber M; Krzan M; Iglic A
    Blood Cells Mol Dis; 2008; 41(1):124-32. PubMed ID: 18387323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the effects of leaf senescence on membranes by treatment with paraquat.
    Chia LS; Thompson JE; Dumbroff EB
    Plant Physiol; 1981 Mar; 67(3):415-20. PubMed ID: 16661685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyl chain and head group regulation of phospholipid catabolism in senescing carnation flowers.
    Brown JH; Chambers JA; Thompson JE
    Plant Physiol; 1991 Mar; 95(3):909-16. PubMed ID: 16668071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular species specificity of phospholipid breakdown in microsomal membranes of senescing carnation flowers.
    Brown JH; Lynch DV; Thompson JE
    Plant Physiol; 1987 Nov; 85(3):679-83. PubMed ID: 16665759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid degradation and limited synthesis of phospholipids in the cotyledons of mung bean seedlings.
    Gilkes NR; Herman EM; Chrispeels MJ
    Plant Physiol; 1979 Jul; 64(1):38-42. PubMed ID: 16660911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.