These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16668491)

  • 1. Effect of Sucrose on Phase Behavior of Membranes in Intact Pollen of Typha latifolia L., as Measured with Fourier Transform Infrared Spectroscopy.
    Hoekstra FA; Crowe JH; Crowe LM
    Plant Physiol; 1991 Nov; 97(3):1073-9. PubMed ID: 16668491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane phase transitions are responsible for imbibitional damage in dry pollen.
    Crowe JH; Hoekstra FA; Crowe LM
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):520-3. PubMed ID: 16594011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy.
    Crowe JH; Hoekstra FA; Crowe LM; Anchordoguy TJ; Drobnis E
    Cryobiology; 1989 Feb; 26(1):76-84. PubMed ID: 2924595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered Phase Behavior in Membranes of Aging Dry Pollen May Cause Imbibitional Leakage.
    Van Bilsen D; Hoekstra FA; Crowe LM; Crowe JH
    Plant Physiol; 1994 Apr; 104(4):1193-1199. PubMed ID: 12232157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes.
    Cacela C; Hincha DK
    Biophys J; 2006 Apr; 90(8):2831-42. PubMed ID: 16443655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of Dry Desiccation-Tolerant Pollen Does Not Affect Protein Secondary Structure.
    Wolkers WF; Hoekstra FA
    Plant Physiol; 1995 Nov; 109(3):907-915. PubMed ID: 12228641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A crystalline lipid phase in a dry biological system: evidence from X-ray diffraction analysis of Typha latifolia pollen.
    Caffrey M; Werner BG; Priestley DA
    Biochim Biophys Acta; 1987 Sep; 921(1):124-34. PubMed ID: 3620484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: an in situ fourier transform infrared spectroscopy study.
    Oldenhof H; Wolkers WF; Fonseca F; Passot S; Marin M
    Biotechnol Prog; 2005; 21(3):885-92. PubMed ID: 15932269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying.
    Leslie SB; Israeli E; Lighthart B; Crowe JH; Crowe LM
    Appl Environ Microbiol; 1995 Oct; 61(10):3592-7. PubMed ID: 7486995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro.
    Wolkers WF; McCready S; Brandt WF; Lindsey GG; Hoekstra FA
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):196-206. PubMed ID: 11341929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fourier transform infrared microspectroscopy study of sugar glasses: application to anhydrobiotic higher plant cells.
    Wolkers WF; Oldenhof H; Alberda M; Hoekstra FA
    Biochim Biophys Acta; 1998 Jan; 1379(1):83-96. PubMed ID: 9468336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Property Changes and Thermal Analysis during the Carbonizing Process of the Pollen Grains of
    Gao M; Bao B; Cao Y; Shan M; Cheng F; Jiang M; Chen P; Zhang L
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30602681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural correlates of imbibitional injury in Typha pollen.
    Sack FD; Leopold AC; Hoekstra FA
    Am J Bot; 1988; 75(4):570-8. PubMed ID: 11537890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance.
    Lahlali R; Jiang Y; Kumar S; Karunakaran C; Liu X; Borondics F; Hallin E; Bueckert R
    Front Plant Sci; 2014; 5():747. PubMed ID: 25566312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure.
    Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A
    Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions and permeability changes in dry membranes during rehydration.
    Crowe JH; Crowe LM; Hoekstra FA
    J Bioenerg Biomembr; 1989 Feb; 21(1):77-91. PubMed ID: 2651428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen.
    Bağcıoğlu M; Zimmermann B; Kohler A
    PLoS One; 2015; 10(9):e0137899. PubMed ID: 26376486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared study of the rod outer segment disk and plasma membranes of vertebrate retina.
    Lamba OP; Borchman D; O'Brien PJ
    Biochemistry; 1994 Feb; 33(7):1704-12. PubMed ID: 8110772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lipid phase transitions on cuticular permeability: model membrane and in situ studies.
    Rourke BC; Gibbs AG
    J Exp Biol; 1999 Nov; 202 Pt 22():3255-62. PubMed ID: 10539973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.
    Lewis RN; McElhaney RN
    Biophys J; 2000 Oct; 79(4):2043-55. PubMed ID: 11023908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.