BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16668604)

  • 1. Enhanced Sensitivity to Ethylene in Nitrogen- or Phosphate-Starved Roots of Zea mays L. during Aerenchyma Formation.
    He CJ; Morgan PW; Drew MC
    Plant Physiol; 1992 Jan; 98(1):137-42. PubMed ID: 16668604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased Ethylene Biosynthesis, and Induction of Aerenchyma, by Nitrogen- or Phosphate-Starvation in Adventitious Roots of Zea mays L.
    Drew MC; He CJ; Morgan PW
    Plant Physiol; 1989 Sep; 91(1):266-71. PubMed ID: 16667008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency.
    Drew MC; Jackson MB; Giffard SC; Campbell R
    Planta; 1981 Nov; 153(3):217-24. PubMed ID: 24276824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L.
    Drew MC; Jackson MB; Giffard S
    Planta; 1979 Oct; 147(1):83-8. PubMed ID: 24310899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen.
    Jackson MB; Fenning TM; Drew MC; Saker LR
    Planta; 1985 Sep; 165(4):486-92. PubMed ID: 24241221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Enzymes Associated with Lysigenous Aerenchyma Formation in Roots of Zea mays during Hypoxia or Nitrogen Starvation.
    He CJ; Drew MC; Morgan PW
    Plant Physiol; 1994 Jul; 105(3):861-865. PubMed ID: 12232249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress.
    Gao C; Ding L; Li Y; Chen Y; Zhu J; Gu M; Li Y; Xu G; Shen Q; Guo S
    Funct Plant Biol; 2017 Apr; 44(4):430-442. PubMed ID: 32480576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.
    Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M
    Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transduction of an Ethylene Signal Is Required for Cell Death and Lysis in the Root Cortex of Maize during Aerenchyma Formation Induced by Hypoxia.
    He CJ; Morgan PW; Drew MC
    Plant Physiol; 1996 Oct; 112(2):463-472. PubMed ID: 12226403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene.
    Visser EJ; Bögemann GM
    New Phytol; 2006; 171(2):305-14. PubMed ID: 16866938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerenchyma formation in roots of maize during sulphate starvation.
    Bouranis DL; Chorianopoulou SN; Siyiannis VF; Protonotarios VE; Hawkesford MJ
    Planta; 2003 Jul; 217(3):382-91. PubMed ID: 12728316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.
    Saab IN; Sachs MM
    Plant Physiol; 1996 Sep; 112(1):385-91. PubMed ID: 8819334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize.
    Bouranis DL; Chorianopoulou SN; Kollias C; Maniou P; Protonotarios VE; Siyiannis VF; Hawkesford MJ
    Ann Bot; 2006 May; 97(5):695-704. PubMed ID: 16481362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion].
    Bragina TV; Martinovich LI; Rodionova NA; Bezborodov AM; Grineva GM
    Prikl Biokhim Mikrobiol; 2001; 37(6):722-5. PubMed ID: 11771328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into trophic aerenchyma formation strategy in maize (Zea mays L.) organs during sulfate deprivation.
    Maniou F; Chorianopoulou SN; Bouranis DL
    Front Plant Sci; 2014; 5():581. PubMed ID: 25404934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.
    Yamauchi T; Shiono K; Nagano M; Fukazawa A; Ando M; Takamure I; Mori H; Nishizawa NK; Kawai-Yamada M; Tsutsumi N; Kato K; Nakazono M
    Plant Physiol; 2015 Sep; 169(1):180-93. PubMed ID: 26036614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of
    Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M
    Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.