These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 16668692)
21. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Goldschmidt EE; Huber SC Plant Physiol; 1992 Aug; 99(4):1443-8. PubMed ID: 16669056 [TBL] [Abstract][Full Text] [Related]
22. Leaf photosynthesis and conductance of selected triticum species at different water potentials. Johnson RC; Mornhinweg DW; Ferris DM; Heitholt JJ Plant Physiol; 1987 Apr; 83(4):1014-7. PubMed ID: 16665315 [TBL] [Abstract][Full Text] [Related]
23. Observation of the scale of patchy stomatal behavior in leaves of Quercus crispula using an Imaging-PAM chlorophyll fluorometer. Kamakura M; Kosugi Y; Takanashi S; Tobita H; Uemura A; Utsugi H Tree Physiol; 2012 Jul; 32(7):839-46. PubMed ID: 22696269 [TBL] [Abstract][Full Text] [Related]
24. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Voelker SL; Brooks JR; Meinzer FC; Anderson R; Bader MK; Battipaglia G; Becklin KM; Beerling D; Bert D; Betancourt JL; Dawson TE; Domec JC; Guyette RP; Körner C; Leavitt SW; Linder S; Marshall JD; Mildner M; Ogée J; Panyushkina I; Plumpton HJ; Pregitzer KS; Saurer M; Smith AR; Siegwolf RT; Stambaugh MC; Talhelm AF; Tardif JC; Van de Water PK; Ward JK; Wingate L Glob Chang Biol; 2016 Feb; 22(2):889-902. PubMed ID: 26391334 [TBL] [Abstract][Full Text] [Related]
25. A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves : Experiments with Arbutus unedo L. during the diurnal course. Beyschlag W; Pfanz H Oecologia; 1990 Jan; 82(1):52-55. PubMed ID: 28313137 [TBL] [Abstract][Full Text] [Related]
26. Internal CO(2) Measured Directly in Leaves : Abscisic Acid and Low Leaf Water Potential Cause Opposing Effects. Lauer MJ; Boyer JS Plant Physiol; 1992 Apr; 98(4):1310-6. PubMed ID: 16668793 [TBL] [Abstract][Full Text] [Related]
27. Water Deficit and Associated Changes in Some Photosynthetic Parameters in Leaves of ;Valencia' Orange (Citrus sinensis [L.] Osbeck). Vu JC; Yelenosky G Plant Physiol; 1988 Oct; 88(2):375-8. PubMed ID: 16666311 [TBL] [Abstract][Full Text] [Related]
28. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. García-Mata C; Lamattina L Plant Physiol; 2001 Jul; 126(3):1196-204. PubMed ID: 11457969 [TBL] [Abstract][Full Text] [Related]
29. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species. Hu L; Wang Z; Huang B Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869 [TBL] [Abstract][Full Text] [Related]
30. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR J Exp Bot; 2009; 60(8):2249-70. PubMed ID: 19395391 [TBL] [Abstract][Full Text] [Related]
31. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia. Kosugi Y; Takanashi S; Matsuo N; Nik AR Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974 [TBL] [Abstract][Full Text] [Related]
32. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Ni BR; Pallardy SG Plant Physiol; 1992 Aug; 99(4):1502-8. PubMed ID: 16669065 [TBL] [Abstract][Full Text] [Related]
33. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Steduto P; Albrizio R; Giorio P; Sorrentino G Environ Exp Bot; 2000 Nov; 44(3):243-255. PubMed ID: 11064044 [TBL] [Abstract][Full Text] [Related]
34. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Pastenes C; Pimentel P; Lillo J J Exp Bot; 2005 Jan; 56(411):425-33. PubMed ID: 15596474 [TBL] [Abstract][Full Text] [Related]
35. Mild Water Stress of Phaseolus vulgaris Plants Leads to Reduced Starch Synthesis and Extractable Sucrose Phosphate Synthase Activity. Vassey TL; Sharkey TD Plant Physiol; 1989 Apr; 89(4):1066-70. PubMed ID: 16666665 [TBL] [Abstract][Full Text] [Related]
36. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. Guàrdia M; Fernàndez J; Elena G; Fleck I Tree Physiol; 2012 Jul; 32(7):829-38. PubMed ID: 22539636 [TBL] [Abstract][Full Text] [Related]
37. Effects of pulses of elevated carbon dioxide concentration on stomatal conductance and photosynthesis in wheat and rice. Bunce JA Physiol Plant; 2013 Oct; 149(2):214-21. PubMed ID: 23368841 [TBL] [Abstract][Full Text] [Related]
38. Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). Pilon C; Snider JL; Sobolev V; Chastain DR; Sorensen RB; Meeks CD; Massa AN; Walk T; Singh B; Earl HJ J Plant Physiol; 2018 Dec; 231():124-134. PubMed ID: 30261481 [TBL] [Abstract][Full Text] [Related]
39. The relationship between stomatal resistance and abscisic-acid levels in leaves of water-stressed bean plants. Walton DC; Galson E; Harrison MA Planta; 1977 Jan; 133(2):145-8. PubMed ID: 24425217 [TBL] [Abstract][Full Text] [Related]
40. Chloroplast volume: cell water potential relationships and acclimation of photosynthesis to leaf water deficits. Santakumari M; Berkowitz GA Photosynth Res; 1991 Apr; 28(1):9-20. PubMed ID: 24414794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]