BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16668842)

  • 21. Starch Synthetase, Phosphorylase, ADPglucose Pyrophosphorylase, and UDPglucose Pyrophosphorylase in Developing Maize Kernels.
    Ozbun JL; Hawker JS; Greenberg E; Lammel C; Preiss J
    Plant Physiol; 1973 Jan; 51(1):1-5. PubMed ID: 16658267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of fructose-1,6-bisphosphatase in a range of higher plants that store starch.
    Entwistle G; ap Rees TA
    Biochem J; 1990 Oct; 271(2):467-72. PubMed ID: 2173563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Sugar Transport in Zea mays L. Kernels : I. Characteristics of Sugar Absorption and Metabolism by Developing Maize Endosperm.
    Griffith SM; Jones RJ; Brenner ML
    Plant Physiol; 1987 Jun; 84(2):467-71. PubMed ID: 16665463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Source-sink relations in maize mutants with starch-deficient endosperms.
    Koch KE; Tsui CL; Schrader LE; Nelson OE
    Plant Physiol; 1982 Jul; 70(1):322-5. PubMed ID: 16662473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free sugar fraction of the amylose-related mutants of maize.
    Gentinetta E; Salamini F
    Biochem Genet; 1979 Jun; 17(5-6):405-14. PubMed ID: 518532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms.
    Li J; Baroja-Fernández E; Bahaji A; Muñoz FJ; Ovecka M; Montero M; Sesma MT; Alonso-Casajús N; Almagro G; Sánchez-López AM; Hidalgo M; Zamarbide M; Pozueta-Romero J
    Plant Cell Physiol; 2013 Feb; 54(2):282-94. PubMed ID: 23292602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kernel Abortion in Maize : II. Distribution of C among Kernel Carbohydrates.
    Hanft JM; Jones RJ
    Plant Physiol; 1986 Jun; 81(2):511-5. PubMed ID: 16664847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation.
    Spielbauer G; Li L; Römisch-Margl L; Do PT; Fouquet R; Fernie AR; Eisenreich W; Gierl A; Settles AM
    J Exp Bot; 2013 May; 64(8):2231-42. PubMed ID: 23530131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Nonaqueous Procedure for Isolating Starch Granules with Associated Metabolites from Maize (Zea mays L.) Endosperm.
    Liu TT; Shannon JC
    Plant Physiol; 1981 Mar; 67(3):518-24. PubMed ID: 16661706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluoride-Induced Inhibition of Starch Biosynthesis in Developing Potato, Solanum tuberosum L., Tubers Is Associated with Pyrophosphate Accumulation.
    Viola R; Davies HV
    Plant Physiol; 1991 Oct; 97(2):638-43. PubMed ID: 16668446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar utilization by developing wild type and shrunken-2 maize kernels.
    Cobb BG; Hannah LC
    Plant Physiol; 1986 Mar; 80(3):609-11. PubMed ID: 16664671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical composition of maize (Zea mays L.) pollen : II. Effects of the endosperm mutants, waxy (wx), shrunken (sh 2) and sugary (su 1) on the carbohydrate and lipid percentage.
    Pfahler PL; Linskens HF
    Theor Appl Genet; 1971 Jan; 41(1):2-4. PubMed ID: 24429905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sugar uptake and starch biosynthesis by slices of developing maize endosperm.
    Felker FC; Liu KC; Shannon JC
    Plant Physiol; 1990 Nov; 94(3):996-1001. PubMed ID: 16667881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose.
    Dieuaide-Noubhani M; Raffard G; Canioni P; Pradet A; Raymond P
    J Biol Chem; 1995 Jun; 270(22):13147-59. PubMed ID: 7768910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of shrunken endosperm mutants in barley.
    Ma J; Jiang QT; Wei L; Wang JR; Chen GY; Liu YX; Li W; Wei YM; Liu C; Zheng YL
    Gene; 2014 Apr; 539(1):15-20. PubMed ID: 24508469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme activities of starch and sucrose pathways and growth of apical and Basal maize kernels.
    Ou-Lee TM; Setter TL
    Plant Physiol; 1985 Nov; 79(3):848-51. PubMed ID: 16664503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polypeptides of the maize amyloplast stroma. Stromal localization of starch-biosynthetic enzymes and identification of an 81-kilodalton amyloplast stromal heat-shock cognate.
    Yu Y; Mu HH; Mu-Forster C; Wasserman BP
    Plant Physiol; 1998 Apr; 116(4):1451-60. PubMed ID: 9536063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dependence of Seed Vigor during Germination on Carbohydrate Source in Endosperm Mutants of Maize.
    Styer RC; Cantliffe DJ
    Plant Physiol; 1984 Sep; 76(1):196-200. PubMed ID: 16663797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm.
    Boehlein SK; Shaw JR; Boehlein TJ; Boehlein EC; Hannah LC
    Plant J; 2018 Nov; 96(3):595-606. PubMed ID: 30062763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished.
    Schneider A; Häusler RE; Kolukisaoglu U; Kunze R; van der Graaff E; Schwacke R; Catoni E; Desimone M; Flügge UI
    Plant J; 2002 Dec; 32(5):685-99. PubMed ID: 12472685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.