These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16668874)

  • 1. NO(3) Enhances the Kinase Activity for Phosphorylation of Phosphoenolpyruvate Carboxylase and Sucrose Phosphate Synthase Proteins in Wheat Leaves: Evidence from the Effects of Mannose and Okadaic Acid.
    Le Van Quy ; Champigny ML
    Plant Physiol; 1992 May; 99(1):344-7. PubMed ID: 16668874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Light and NO(3) on Wheat Leaf Phosphoenolpyruvate Carboxylase Activity: Evidence for Covalent Modulation of the C(3) Enzyme.
    Le Van Quy ; Foyer C; Champigny ML
    Plant Physiol; 1991 Dec; 97(4):1476-82. PubMed ID: 16668573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial purification and biochemical characterization of a heteromeric protein phosphatase 2A holoenzyme from maize (Zea mays L.) leaves that dephosphorylates C4 phosophoenolpyruvate carboxylase.
    Dong L; Ermolova NV; Chollet R
    Planta; 2001 Jul; 213(3):379-89. PubMed ID: 11506360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade.
    Bakrim N; Echevarria C; Cretin C; Arrio-Dupont M; Pierre JN; Vidal J; Chollet R; Gadal P
    Eur J Biochem; 1992 Mar; 204(2):821-30. PubMed ID: 1311681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase.
    Huber JL; Huber SC
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):877-82. PubMed ID: 1534222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Illumination increases the phosphorylation state of maize leaf phosphoenolpyruvate carboxylase by causing an increase in the activity of a protein kinase.
    McNaughton GA; MacKintosh C; Fewson CA; Wilkins MB; Nimmo HG
    Biochim Biophys Acta; 1991 Jul; 1093(2-3):189-95. PubMed ID: 1863599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible light activation of the phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves.
    Echevarría C; Vidal J; Jiao JA; Chollet R
    FEBS Lett; 1990 Nov; 275(1-2):25-8. PubMed ID: 2148159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marked modulation by phosphate of phosphoenolpyruvate carboxylase in leaves of Amaranthus hypochondriacus, a NAD-ME type C4 plant: decrease in malate sensitivity but no change in the phosphorylation status.
    Murmu J; Chinthapalli B; Raghavendra AS
    J Exp Bot; 2003 Dec; 54(393):2661-8. PubMed ID: 14585826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation.
    Duff S; Chollet R
    Plant Physiol; 1995 Mar; 107(3):775-782. PubMed ID: 12228402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase.
    Law RD; Plaxton WC
    Eur J Biochem; 1997 Jul; 247(2):642-51. PubMed ID: 9266708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose-phosphate synthase phosphatase, a type 2A protein phosphatase, changes its sensitivity towards inhibition by inorganic phosphate in spinach leaves.
    Weiner H; Weiner H; Stitt M
    FEBS Lett; 1993 Oct; 333(1-2):159-64. PubMed ID: 8224158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino Acid biosynthesis: basis for a new concept.
    Champigny ML; Foyer C
    Plant Physiol; 1992 Sep; 100(1):7-12. PubMed ID: 16653003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants.
    Jiao J; Echevarría C; Vidal J; Chollet R
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2712-5. PubMed ID: 11607171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of sucrose-phosphate synthase from darkened spinach leaves by an endogenous protein phosphatase.
    Huber SC; Huber JL
    Arch Biochem Biophys; 1990 Nov; 282(2):421-6. PubMed ID: 2173486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Activity of NADP-dependent glyceraldehyde-phosphate dehydrogenase and phosphoenolpyruvate carboxylase in wheat leaves under water stress].
    Cherniad'ev II; Monakhova OF
    Prikl Biokhim Mikrobiol; 2006; 42(3):353-61. PubMed ID: 16878554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars.
    Noël GM; Tognetti JA; Pontis HG
    Planta; 2001 Aug; 213(4):640-6. PubMed ID: 11556797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation.
    Huber JL; Hite DR; Outlaw WH; Huber SC
    Plant Physiol; 1991 Jan; 95(1):291-7. PubMed ID: 16667968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare.
    Monreal JA; López-Baena FJ; Vidal J; Echevarría C; García-Mauriño S
    Planta; 2007 Mar; 225(4):801-12. PubMed ID: 16983537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine.
    Tovar-Méndez A; Rodríguez-Sotres R; López-Valentín DM; Muñoz-Clares RA
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):633-42. PubMed ID: 9620864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation.
    Moraes TF; Plaxton WC
    Eur J Biochem; 2000 Jul; 267(14):4465-76. PubMed ID: 10880970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.