These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16668928)

  • 1. Increased Fatty Acid beta-Oxidation after Glucose Starvation in Maize Root Tips.
    Dieuaide M; Brouquisse R; Pradet A; Raymond P
    Plant Physiol; 1992 Jun; 99(2):595-600. PubMed ID: 16668928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M; Couée I; Pradet A; Raymond P
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. evidence for an in vivo oxidation of the proteasome.
    Basset G; Raymond P; Malek L; Brouquisse R
    Plant Physiol; 2002 Mar; 128(3):1149-62. PubMed ID: 11891269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar-Starvation-Induced Changes of Carbon Metabolism in Excised Maize Root Tips.
    Dieuaide-Noubhani M; Canioni P; Raymond P
    Plant Physiol; 1997 Dec; 115(4):1505-1513. PubMed ID: 12223877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of glucose starvation in excised maize root tips.
    Brouquisse R; James F; Raymond P; Pradet A
    Plant Physiol; 1991 Jun; 96(2):619-26. PubMed ID: 16668231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation.
    Hashimoto F; Hayashi H
    Biochim Biophys Acta; 1987 Sep; 921(1):142-50. PubMed ID: 2887206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding.
    Pérez-Jiménez A; Cardenete G; Hidalgo MC; García-Alcázar A; Abellán E; Morales AE
    Fish Physiol Biochem; 2012 Aug; 38(4):1145-1157. PubMed ID: 22228074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips.
    Brouquisse R; James F; Pradet A; Raymond P
    Planta; 1992 Oct; 188(3):384-95. PubMed ID: 24178329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive uptake and degradation of fatty acids by Yersinia pestis.
    Moncla BJ; Hillier SL; Charnetzky WT
    J Bacteriol; 1983 Jan; 153(1):340-4. PubMed ID: 6129238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glucose starvation on mitochondrial subpopulations in the meristematic and submeristematic regions of maize root.
    Couée I; Jan M; Carde JP; Brouquisse R; Raymond P; Pradet A
    Plant Physiol; 1992 Dec; 100(4):1891-900. PubMed ID: 16653214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions.
    Saggerson ED; Greenbaum AL
    Biochem J; 1970 Sep; 119(2):221-42. PubMed ID: 4249859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid degradation in Caulobacter crescentus.
    O'Connell M; Henry S; Shapiro L
    J Bacteriol; 1986 Oct; 168(1):49-54. PubMed ID: 2875991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips.
    Chevalier C; Bourgeois E; Pradet A; Raymond P
    Plant Mol Biol; 1995 Jun; 28(3):473-85. PubMed ID: 7632917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of starvation and starvation followed by feeding on enzyme activity and the metabolism of [U-14C]glucose in liver from growing chicks.
    Goodridge AG
    Biochem J; 1968 Jul; 108(4):667-73. PubMed ID: 5667280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone.
    Brouquisse R; Rolin D; Cortès S; Gaudillère M; Evrard A; Roby C
    Planta; 2007 Feb; 225(3):693-709. PubMed ID: 16944197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I.
    Moir AM; Zammit VA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):241-6. PubMed ID: 8097087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of glyoxylate cycle enzymes in rat liver upon food starvation.
    Popov VN; Igamberdiev AU; Schnarrenberger C; Volvenkin SV
    FEBS Lett; 1996 Jul; 390(3):258-60. PubMed ID: 8706872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Thia fatty acid treatment, in contrast to eicosapentaenoic acid and starvation, induces gene expression of carnitine palmitoyltransferase-II in rat liver.
    Madsen L; Berge RK
    Lipids; 1999 May; 34(5):447-56. PubMed ID: 10380116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible beta-oxidation pathway in Neurospora crassa.
    Kionka C; Kunau WH
    J Bacteriol; 1985 Jan; 161(1):153-7. PubMed ID: 3155714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic changes in the African fruit beetle, Pachnoda sinuata, during starvation.
    Auerswald L; Gäde G
    J Insect Physiol; 2000 Mar; 46(3):343-351. PubMed ID: 12770239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.