These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16669030)

  • 1. Phloem Transport of Amino Acids in Relation to their Cytosolic Levels in Barley Leaves.
    Winter H; Lohaus G; Heldt HW
    Plant Physiol; 1992 Jul; 99(3):996-1004. PubMed ID: 16669030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the Phloem sap of spinach leaves.
    Riens B; Lohaus G; Heineke D; Heldt HW
    Plant Physiol; 1991 Sep; 97(1):227-33. PubMed ID: 16668375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.).
    Kallarackal J; Bauer SN; Nowak H; Hajirezaei MR; Komor E
    Planta; 2012 Jul; 236(1):209-23. PubMed ID: 22328125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free amino Acid composition of leaf exudates and Phloem sap : a comparative study in oats and barley.
    Weibull J; Ronquist F; Brishammar S
    Plant Physiol; 1990 Jan; 92(1):222-6. PubMed ID: 16667250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.
    Bauer SN; Nowak H; Keller F; Kallarackal J; Hajirezaei MR; Komor E
    Physiol Plant; 2014 Sep; 152(1):130-7. PubMed ID: 24446756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content.
    Lohaus G; Moellers C
    Planta; 2000 Nov; 211(6):833-40. PubMed ID: 11144268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap.
    Schobert C; Komor E
    Planta; 1989 Mar; 177(3):342-9. PubMed ID: 24212427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aphid (Sitobion yakini) investigation suggests thin-walled sieve tubes in barley (Hordeum vulgare) to be more functional than thick-walled sieve tubes.
    Matsiliza B; Botha CE
    Physiol Plant; 2002 May; 115(1):137-143. PubMed ID: 12010477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in Eastern cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behavior of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae).
    Gould GG; Jones CG; Rifleman P; Perez A; Coleman JS
    Environ Entomol; 2007 Oct; 36(5):1212-25. PubMed ID: 18284747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap.
    Kallarackal J; Orlich G; Schobert C; Komor E
    Planta; 1989 Mar; 177(3):327-35. PubMed ID: 24212425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy.
    Gaupels F; Knauer T; van Bel AJ
    J Plant Physiol; 2008 Jan; 165(1):95-103. PubMed ID: 17997192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of sieve tube turgor pressure using severed aphid stylets.
    Wright JP; Fisher DB
    Plant Physiol; 1980 Jun; 65(6):1133-5. PubMed ID: 16661346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar.
    Knop C; Voitsekhovskaja O; Lohaus G
    Planta; 2001 May; 213(1):80-91. PubMed ID: 11523659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and Conversion of Sugars by Developing Wheat Grains : VI. Gradients Along the Transport Pathway from the Peduncle to the Endosperm Cavity during Grain Filling.
    Fisher DB; Gifford RM
    Plant Physiol; 1986 Dec; 82(4):1024-30. PubMed ID: 16665129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional enhancement of host plants by aphids - a comparison of three aphid species on grasses.
    Sandström J; Telang A; Moran NA
    J Insect Physiol; 2000 Jan; 46(1):33-40. PubMed ID: 12770256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plant axis as the command centre for (re)distribution of sucrose and amino acids.
    van Bel AJE
    J Plant Physiol; 2021 Oct; 265():153488. PubMed ID: 34416599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis.
    Gould N; Thorpe MR; Koroleva O; Minchin PEH
    Funct Plant Biol; 2005 Nov; 32(11):1019-1026. PubMed ID: 32689197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of Assimilate Production and Translocation in Muskmelon (Cucumis melo L.) : I. Diurnal Patterns.
    Mitchell DE; Gadus MV; Madore MA
    Plant Physiol; 1992 Jul; 99(3):959-65. PubMed ID: 16669025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions.
    Tilsner J; Kassner N; Struck C; Lohaus G
    Planta; 2005 Jun; 221(3):328-38. PubMed ID: 15599760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.