BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16669044)

  • 1. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts.
    Neubauer C; Yamamoto HY
    Plant Physiol; 1992 Aug; 99(4):1354-61. PubMed ID: 16669044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts.
    Neubauer C; Yamamoto HY
    Photosynth Res; 1994 Feb; 39(2):137-47. PubMed ID: 24311066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).
    Neubauer C
    Plant Physiol; 1993 Oct; 103(2):575-583. PubMed ID: 12231962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An active Mehler-peroxidase reaction sequence can prevent cyclic PS I electron transport in the presence of dioxygen in intact spinach chloroplasts.
    Hormann H; Neubauer C; Schreiber U
    Photosynth Res; 1994 Sep; 41(3):429-37. PubMed ID: 24310157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport.
    Gilmore AM; Yamamoto HY
    Plant Physiol; 1991 Jun; 96(2):635-43. PubMed ID: 16668233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP.
    Gilmore AM; Yamamoto HY
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1899-903. PubMed ID: 1542689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.
    Demmig-Adams B; Adams WW; Heber U; Neimanis S; Winter K; Krüger A; Czygan FC; Bilger W; Björkman O
    Plant Physiol; 1990 Feb; 92(2):293-301. PubMed ID: 16667274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.
    Niyogi KK; Bjorkman O; Grossman AR
    Plant Cell; 1997 Aug; 9(8):1369-1380. PubMed ID: 12237386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of vectorial proton transport supported by cyclic electron flow during oxygen reduction by illuminated intact chloroplasts.
    Kobayashi Y; Heber U
    Photosynth Res; 1994 Sep; 41(3):419-28. PubMed ID: 24310156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein.
    Gilmore AM
    Photosynth Res; 2001; 67(1-2):89-101. PubMed ID: 16228319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching.
    Gilmore AM; Yamamoto HY
    Photosynth Res; 1993 Jan; 35(1):67-78. PubMed ID: 24318621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pronounced light-induced zeaxanthin formation accompanied by an unusually slight increase in non-photochemical quenching: a study with barley leaves treated with methyl viologen at moderate light.
    Kotabová E; Kana R; Kyseláková H; Lípová L; Novák O; Ilík P
    J Plant Physiol; 2008 Oct; 165(15):1563-71. PubMed ID: 18423934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbate biosynthesis and function in photoprotection.
    Smirnoff N
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1455-64. PubMed ID: 11127999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.
    Schreiber U; Neubauer C
    Photosynth Res; 1990 Sep; 25(3):279-93. PubMed ID: 24420358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis.
    Johnson MP; Pérez-Bueno ML; Zia A; Horton P; Ruban AV
    Plant Physiol; 2009 Feb; 149(2):1061-75. PubMed ID: 19011000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity.
    Peterson RB; Havir EA
    Planta; 2000 Jan; 210(2):205-14. PubMed ID: 10664126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Response of CO(2) Assimilation, Dissipation of Excess Excitation Energy, and Zeaxanthin Content of Sun and Shade Leaves.
    Demmig-Adams B; Winter K; Krüger A; Czygan FC
    Plant Physiol; 1989 Jul; 90(3):881-6. PubMed ID: 16666892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zeaxanthin Synthesis, Energy Dissipation, and Photoprotection of Photosystem II at Chilling Temperatures.
    Demmig-Adams B; Winter K; Krüger A; Czygan FC
    Plant Physiol; 1989 Jul; 90(3):894-8. PubMed ID: 16666894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.