These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16669044)

  • 21. The competition between methyl viologen and monodehydroascorbate radical as electron acceptors in spinach thylakoids and intact chloroplasts.
    Ivanov B
    Free Radic Res; 2000 Sep; 33(3):217-27. PubMed ID: 10993476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.
    Niyogi KK; Grossman AR; Björkman O
    Plant Cell; 1998 Jul; 10(7):1121-34. PubMed ID: 9668132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin.
    Crouchman S; Ruban A; Horton P
    FEBS Lett; 2006 Apr; 580(8):2053-8. PubMed ID: 16545380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of ;high-energy-state' quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions.
    Adams WW; Demmig-Adams B; Winter K
    Plant Physiol; 1990 Feb; 92(2):302-9. PubMed ID: 16667275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P; Conklin PL; Niyogi KK
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L; Grasses T; Graf M; Rech J; Jahns P
    Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-dependent reduction of hydrogen peroxide by ruptured pea chloroplasts.
    Jablonski PP; Anderson JW
    Plant Physiol; 1982 Jun; 69(6):1407-13. PubMed ID: 16662413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zeaxanthin and the Induction and Relaxation Kinetics of the Dissipation of Excess Excitation Energy in Leaves in 2% O(2), 0% CO(2).
    Demmig-Adams B; Winter K; Krüger A; Czygan FC
    Plant Physiol; 1989 Jul; 90(3):887-93. PubMed ID: 16666893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physiological roles and metabolism of ascorbate in chloroplasts.
    Tóth SZ; Schansker G; Garab G
    Physiol Plant; 2013 Jun; 148(2):161-75. PubMed ID: 23163968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.
    Bilger W; Björkman O
    Planta; 1991 May; 184(2):226-34. PubMed ID: 24194074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F; Havaux M
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A photoprotective role for O(2) as an alternative electron sink in photosynthesis?
    Ort DR; Baker NR
    Curr Opin Plant Biol; 2002 Jun; 5(3):193-8. PubMed ID: 11960735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possible Role of Cbr, an Algal Early-Light-Induced Protein, in Nonphotochemical Quenching of Chlorophyll Fluorescence.
    Braun P; Banet G; Tal T; Malkin S; Zamir A
    Plant Physiol; 1996 Apr; 110(4):1405-1411. PubMed ID: 12226269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrathylakoid pH in Isolated Pea Chloroplasts as Probed by Violaxanthin Deepoxidation.
    Pfundel EE; Renganathan M; Gilmore AM; Yamamoto HY; Dilley RA
    Plant Physiol; 1994 Dec; 106(4):1647-1658. PubMed ID: 12232439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of Xanthophyll-Cycle Activity in Different Antenna Subcomplexes in the Photosynthetic Membranes of Higher Plants (The Relationship between Zeaxanthin Conversion and Nonphotochemical Fluorescence Quenching).
    Farber A; Young AJ; Ruban AV; Horton P; Jahns P
    Plant Physiol; 1997 Dec; 115(4):1609-1618. PubMed ID: 12223884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves.
    Pfündel EE; Pan RS; Dilley RA
    Plant Physiol; 1992 Apr; 98(4):1372-80. PubMed ID: 16668802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.
    Kaňa R; Kotabová E; Kopečná J; Trsková E; Belgio E; Sobotka R; Ruban AV
    FEBS Lett; 2016 Apr; 590(8):1076-85. PubMed ID: 26988983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress.
    Lee MH; Cho EJ; Wi SG; Bae H; Kim JE; Cho JY; Lee S; Kim JH; Chung BY
    Plant Physiol Biochem; 2013 Sep; 70():325-35. PubMed ID: 23811121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure.
    Phillip D; Ruban AV; Horton P; Asato A; Young AJ
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1492-7. PubMed ID: 11607629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.