These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16669044)

  • 41. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice.
    Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M
    Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.
    Badger MR; von Caemmerer S; Ruuska S; Nakano H
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1433-46. PubMed ID: 11127997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant
    Tian L; Xu P; Chukhutsina VU; Holzwarth AR; Croce R
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4828-4832. PubMed ID: 28416696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes.
    Moya I; Silvestri M; Vallon O; Cinque G; Bassi R
    Biochemistry; 2001 Oct; 40(42):12552-61. PubMed ID: 11601979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex.
    Finazzi G; Johnson GN; Dall'Osto L; Joliot P; Wollman FA; Bassi R
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12375-80. PubMed ID: 15304641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induction of Nonphotochemical Energy Dissipation and Absorbance Changes in Leaves (Evidence for Changes in the State of the Light-Harvesting System of Photosystem II in Vivo).
    Ruban AV; Young AJ; Horton P
    Plant Physiol; 1993 Jul; 102(3):741-750. PubMed ID: 12231862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
    Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. Effects of zeaxanthin, pH and phosphorylation.
    Crimi M; Dorra D; Bösinger CS; Giuffra E; Holzwarth AR; Bassi R
    Eur J Biochem; 2001 Jan; 268(2):260-7. PubMed ID: 11168359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo.
    Hurry V; Anderson JM; Chow WS; Osmond CB
    Plant Physiol; 1997 Feb; 113(2):639-648. PubMed ID: 12223632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extraction and Reconstitution of Photosystem II.
    Okayama S; Butler WL
    Plant Physiol; 1972 May; 49(5):769-74. PubMed ID: 16658045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts.
    Ruban AV; Wentworth M; Horton P
    Biochemistry; 2001 Aug; 40(33):9896-901. PubMed ID: 11502183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy.
    Demmig B; Winter K; Krüger A; Czygan FC
    Plant Physiol; 1987 Jun; 84(2):218-24. PubMed ID: 16665420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment.
    Son M; Pinnola A; Schlau-Cohen GS
    Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148115. PubMed ID: 32204904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae.
    Bína D; Bouda K; Litvín R
    Photosynth Res; 2017 Jan; 131(1):65-77. PubMed ID: 27485797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intact chloroplasts display pH 5 optimum of O2-reduction in the absence of methyl viologen: Indirect evidence for a regulatory role of superoxide protonation.
    Hormann H; Neubauer C; Asada K; Schreiber U
    Photosynth Res; 1993 Jul; 37(1):69-80. PubMed ID: 24317655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching.
    Matsubara S; Chen YC; Caliandro R; Govindjee ; Clegg RM
    J Photochem Photobiol B; 2011; 104(1-2):271-84. PubMed ID: 21356597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves.
    Takagi D; Hashiguchi M; Sejima T; Makino A; Miyake C
    Photosynth Res; 2016 Sep; 129(3):279-90. PubMed ID: 27116126
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Photosystem II Subunit S under Stress.
    Daskalakis V; Papadatos S
    Biophys J; 2017 Dec; 113(11):2364-2372. PubMed ID: 29211990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Ascorbate-induced Absorbance Change in Chloroplasts from Violaxanthin De-epoxidation.
    Yamamoto HY; Kamite L; Wang YY
    Plant Physiol; 1972 Feb; 49(2):224-8. PubMed ID: 16657929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.