These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16669076)

  • 1. Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins.
    Talon M; Zacarias L; Primo-Millo E
    Plant Physiol; 1992 Aug; 99(4):1575-81. PubMed ID: 16669076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina).
    Mesejo C; Yuste R; Martínez-Fuentes A; Reig C; Iglesias DJ; Primo-Millo E; Agustí M
    Physiol Plant; 2013 May; 148(1):87-96. PubMed ID: 23002897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.
    Mesejo C; Yuste R; Reig C; Martínez-Fuentes A; Iglesias DJ; Muñoz-Fambuena N; Bermejo A; Germanà MA; Primo-Millo E; Agustí M
    Plant Sci; 2016 Jun; 247():13-24. PubMed ID: 27095396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries.
    Fos M; Nuez F; García-Martínez JL
    Plant Physiol; 2000 Feb; 122(2):471-80. PubMed ID: 10677440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato.
    Fos M; Proaño K; Nuez F; García-Martínez JL
    Physiol Plant; 2001 Apr; 111(4):545-550. PubMed ID: 11299021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus.
    Ben-Cheikh W; Perez-Botella J; Tadeo FR; Talon M; Primo-Millo E
    Plant Physiol; 1997 Jun; 114(2):557-564. PubMed ID: 12223728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parental diagnosis of satsuma mandarin (
    Fujii H; Ohta S; Nonaka K; Katayose Y; Matsumoto T; Endo T; Yoshioka T; Omura M; Shimada T
    Breed Sci; 2016 Dec; 66(5):683-691. PubMed ID: 28163584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions.
    Goldenberg L; Yaniv Y; Doron-Faigenboim A; Carmi N; Porat R
    J Sci Food Agric; 2016 Jan; 96(1):57-65. PubMed ID: 25824867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profile of Fork-Tailed Bush Katydid (Orthoptera: Tettigoniidae) Feeding on Fruit of Clementine Mandarins.
    Cass BN; Kahl HM; Mueller TG; Xi X; Grafton-Cardwell EE; Rosenheim JA
    J Econ Entomol; 2021 Feb; 114(1):215-224. PubMed ID: 33210704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus.
    Gómez-Cadenas A; Mehouachi J; Tadeo FR; Primo-Millo E; Talon M
    Planta; 2000 Mar; 210(4):636-43. PubMed ID: 10787058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (
    Shimizu T; Tanizawa Y; Mochizuki T; Nagasaki H; Yoshioka T; Toyoda A; Fujiyama A; Kaminuma E; Nakamura Y
    Front Genet; 2017; 8():180. PubMed ID: 29259619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars.
    Arias M; Carbonell J; Agustí M
    J Plant Physiol; 2005 Aug; 162(8):845-53. PubMed ID: 16146310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.
    Yu Y; Bai J; Chen C; Plotto A; Baldwin EA; Gmitter FG
    J Sci Food Agric; 2018 Feb; 98(3):1124-1131. PubMed ID: 28731231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness.
    Guo WW; Prasad D; Cheng YJ; Serrano P; Deng XX; Grosser JW
    Plant Cell Rep; 2004 May; 22(10):752-8. PubMed ID: 14730385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin Metabolism Is Involved in Fruit Set and Early Fruit Development in the Parthenocarpic Tomato "R35-P".
    Zhang S; Gu X; Shao J; Hu Z; Yang W; Wang L; Su H; Zhu L
    Front Plant Sci; 2021; 12():671713. PubMed ID: 34408758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial distribution and migration of three typical fungicides in postharvest satsuma mandarin (
    Yang Y; Mao L; Zhu Y; Yu J; Luo Z; Lin X
    Food Sci Technol Int; 2023 Jul; 29(5):510-517. PubMed ID: 35484814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine.
    Alva O; Roa-Roco RN; Pérez-Díaz R; Yáñez M; Tapia J; Moreno Y; Ruiz-Lara S; González E
    PLoS One; 2015; 10(10):e0139503. PubMed ID: 26440413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development.
    García-Martinez JL; Santes C; Croker SJ; Hedden P
    Planta; 1991 Apr; 184(1):53-60. PubMed ID: 24193929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry matter accumulation in citrus fruit is not limited by transport capacity of the pedicel.
    Garcia-Luis A; Oliveira ME; Bordon Y; Siqueira DL; Tominaga S; Guardiola JL
    Ann Bot; 2002 Dec; 90(6):755-64. PubMed ID: 12451031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fruit set dependence on carbohydrate availability in citrus trees.
    Iglesias DJ; Tadeo FR; Primo-Millo E; Talon M
    Tree Physiol; 2003 Feb; 23(3):199-204. PubMed ID: 12566270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.