BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16669689)

  • 1. Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes Theory to catechol O-methyltransferase.
    Roca M; Moliner V; Tuñón I; Hynes JT
    J Am Chem Soc; 2006 May; 128(18):6186-93. PubMed ID: 16669689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations.
    Roca M; Andrés J; Moliner V; Tuñón I; Bertrán J
    J Am Chem Soc; 2005 Aug; 127(30):10648-55. PubMed ID: 16045352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Grote-Hynes theory to quantify dynamical effects on the reaction rate of enzymatic processes. The case of methyltransferases.
    Castillo R; Roca M; Soriano A; Moliner V; Tuñón I
    J Phys Chem B; 2008 Jan; 112(2):529-34. PubMed ID: 18085772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM determination of kinetic isotope effects for COMT-catalyzed methyl transfer does not support compression hypothesis.
    Ruggiero GD; Williams IH; Roca M; Moliner V; Tuñón I
    J Am Chem Soc; 2004 Jul; 126(28):8634-5. PubMed ID: 15250699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Grote-Hynes theory to the reaction catalyzed by thymidylate synthase.
    Kanaan N; Roca M; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2010 Oct; 114(42):13593-600. PubMed ID: 20925368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the methyl transfer mechanism catalyzed by chalcone O-methyltransferase: a density functional study.
    Cui FC; Pan XL; Liu W; Liu JY
    J Comput Chem; 2011 Nov; 32(14):3068-74. PubMed ID: 21815175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase.
    Rod TH; Rydberg P; Ryde U
    J Chem Phys; 2006 May; 124(17):174503. PubMed ID: 16689579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode-coupling theory for reaction dynamics in liquids.
    Shental N; Rabani E
    J Chem Phys; 2004 Apr; 120(14):6642-7. PubMed ID: 15267556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase.
    Nam K; Prat-Resina X; Garcia-Viloca M; Devi-Kesavan LS; Gao J
    J Am Chem Soc; 2004 Feb; 126(5):1369-76. PubMed ID: 14759194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models.
    Taskinen J; Ethell BT; Pihlavisto P; Hood AM; Burchell B; Coughtrie MW
    Drug Metab Dispos; 2003 Sep; 31(9):1187-97. PubMed ID: 12920175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase.
    Roca M; Oliva M; Castillo R; Moliner V; Tuñón I
    Chemistry; 2010 Oct; 16(37):11399-411. PubMed ID: 20715198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural characterization of a novel catechol-O-methyltransferase from Schizosaccharomyces pombe.
    Wang Q; Teng M; Li X
    IUBMB Life; 2019 Mar; 71(3):330-339. PubMed ID: 30501007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of the apo and holo form of rat catechol-O-methyltransferase.
    Tsuji E; Okazaki K; Isaji M; Takeda K
    J Struct Biol; 2009 Mar; 165(3):133-9. PubMed ID: 19111934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of ortho- and meta-nitrated inhibitors of catechol-O-methyltransferase: interactions with the active site and regioselectivity of O-methylation.
    Palma PN; Rodrigues ML; Archer M; Bonifácio MJ; Loureiro AI; Learmonth DA; Carrondo MA; Soares-da-Silva P
    Mol Pharmacol; 2006 Jul; 70(1):143-53. PubMed ID: 16618795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediation of donor-acceptor distance in an enzymatic methyl transfer reaction.
    Zhang J; Kulik HJ; Martinez TJ; Klinman JP
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):7954-9. PubMed ID: 26080432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases.
    Bai HW; Shim JY; Yu J; Zhu BT
    Chem Res Toxicol; 2007 Oct; 20(10):1409-25. PubMed ID: 17880176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical free energy barrier for an enzymatic reaction.
    Rod TH; Ryde U
    Phys Rev Lett; 2005 Apr; 94(13):138302. PubMed ID: 15904045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.