BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16669758)

  • 21. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.
    Gutu A; Nesbit AD; Alverson AJ; Palmer JD; Kehoe DM
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16253-8. PubMed ID: 24048028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light regulation of pigment and photosystem biosynthesis in cyanobacteria.
    Ho MY; Soulier NT; Canniffe DP; Shen G; Bryant DA
    Curr Opin Plant Biol; 2017 Jun; 37():24-33. PubMed ID: 28391049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatic adaptation and the evolution of light color sensing in cyanobacteria.
    Kehoe DM
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9029-30. PubMed ID: 20457899
    [No Abstract]   [Full Text] [Related]  

  • 24. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon.
    Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS
    Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergence and divergence of the photoregulation of pigmentation and cellular morphology in Fremyella diplosiphon.
    Pattanaik B; Whitaker MJ; Montgomery BL
    Plant Signal Behav; 2011 Dec; 6(12):2038-41. PubMed ID: 22112451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. State transitions: an example of acclimation to low-light stress.
    Mullineaux CW; Emlyn-Jones D
    J Exp Bot; 2005 Jan; 56(411):389-93. PubMed ID: 15582926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria.
    Montgomery BL
    Curr Opin Plant Biol; 2017 Jun; 37():18-23. PubMed ID: 28391048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.
    Badger MR; Price GD; Long BM; Woodger FJ
    J Exp Bot; 2006; 57(2):249-65. PubMed ID: 16216846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells.
    Bordowitz JR; Montgomery BL
    Sensors (Basel); 2010; 10(7):6969-79. PubMed ID: 22163584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The evolution and function of blue and red light photoreceptors.
    Falciatore A; Bowler C
    Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of adaptation to light of different spectral composition on photosynthesis of Chlorella cells].
    Brandt AB; Kiseleva MI
    Biofizika; 1980; 25(6):1056-9. PubMed ID: 7448218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix.
    Campbell D
    Microbiology (Reading); 1996 May; 142(5):1255-1263. PubMed ID: 33725794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoresponsive cAMP signal transduction in cyanobacteria.
    Ohmori M; Okamoto S
    Photochem Photobiol Sci; 2004 Jun; 3(6):503-11. PubMed ID: 15170478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independence and interdependence of the photoregulation of pigmentation and development in Fremyella diplosiphon.
    Bordowitz JR; Whitaker MJ; Montgomery BL
    Commun Integr Biol; 2010 Mar; 3(2):151-3. PubMed ID: 20585508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A new type of adaptation of the cyanobacterium Spirulina platensis to illumination conditions].
    Bolychevtseva IuV; Mazhorova LE; Terekhova IV; Egorova EA; Shugaev AG; Rakhimberdieva MG; Karapetian NV
    Prikl Biokhim Mikrobiol; 2003; 39(5):571-6. PubMed ID: 14593872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of green mutants in Fremyella diplosiphon provides insight into the impact of phycoerythrin deficiency and linker function on complementary chromatic adaptation.
    Whitaker MJ; Pattanaik B; Montgomery BL
    Biochem Biophys Res Commun; 2011 Jan; 404(1):52-6. PubMed ID: 21094137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM.
    Montgomery BL
    Microbiol Mol Biol Rev; 2022 Sep; 86(3):e0010621. PubMed ID: 35727025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors.
    Wiltbank LB; Kehoe DM
    Nat Rev Microbiol; 2019 Jan; 17(1):37-50. PubMed ID: 30410070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoprotection in cyanobacteria: regulation of light harvesting.
    Bailey S; Grossman A
    Photochem Photobiol; 2008; 84(6):1410-20. PubMed ID: 19067963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation.
    Wang W; Wang Y; Shu X; Zhang Q
    J Basic Microbiol; 2013 Jan; 53(1):72-80. PubMed ID: 22581520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.