These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 16669768)
21. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Marinova K; Pourcel L; Weder B; Schwarz M; Barron D; Routaboul JM; Debeaujon I; Klein M Plant Cell; 2007 Jun; 19(6):2023-38. PubMed ID: 17601828 [TBL] [Abstract][Full Text] [Related]
23. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Xuan L; Zhang C; Yan T; Wu D; Hussain N; Li Z; Chen M; Pan J; Jiang L Plant Cell Environ; 2018 Dec; 41(12):2773-2790. PubMed ID: 29981254 [TBL] [Abstract][Full Text] [Related]
24. TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. Xu W; Bobet S; Le Gourrierec J; Grain D; De Vos D; Berger A; Salsac F; Kelemen Z; Boucherez J; Rolland A; Mouille G; Routaboul JM; Lepiniec L; Dubos C J Exp Bot; 2017 May; 68(11):2859-2870. PubMed ID: 28830101 [TBL] [Abstract][Full Text] [Related]
25. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. Jiang N; Lee YS; Mukundi E; Gomez-Cano F; Rivero L; Grotewold E Plant Sci; 2020 Feb; 291():110335. PubMed ID: 31928687 [TBL] [Abstract][Full Text] [Related]
26. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. Mizzotti C; Ezquer I; Paolo D; Rueda-Romero P; Guerra RF; Battaglia R; Rogachev I; Aharoni A; Kater MM; Caporali E; Colombo L PLoS Genet; 2014 Dec; 10(12):e1004856. PubMed ID: 25521508 [TBL] [Abstract][Full Text] [Related]
27. Flavonoid compounds related to seed coat color of wheat. Kohyama N; Chono M; Nakagawa H; Matsuo Y; Ono H; Matsunaka H Biosci Biotechnol Biochem; 2017 Nov; 81(11):2112-2118. PubMed ID: 28934913 [TBL] [Abstract][Full Text] [Related]
28. Metabolite Profiling and Transcriptome Analyses Provide Insights into the Flavonoid Biosynthesis in the Developing Seed of Tartary Buckwheat ( Li H; Lv Q; Ma C; Qu J; Cai F; Deng J; Huang J; Ran P; Shi T; Chen Q J Agric Food Chem; 2019 Oct; 67(40):11262-11276. PubMed ID: 31509416 [TBL] [Abstract][Full Text] [Related]
29. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Santos-Mendoza M; Dubreucq B; Baud S; Parcy F; Caboche M; Lepiniec L Plant J; 2008 May; 54(4):608-20. PubMed ID: 18476867 [TBL] [Abstract][Full Text] [Related]
30. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. Ogo Y; Ozawa K; Ishimaru T; Murayama T; Takaiwa F Plant Biotechnol J; 2013 Aug; 11(6):734-46. PubMed ID: 23551455 [TBL] [Abstract][Full Text] [Related]
31. Combined networks regulating seed maturation. Gutierrez L; Van Wuytswinkel O; Castelain M; Bellini C Trends Plant Sci; 2007 Jul; 12(7):294-300. PubMed ID: 17588801 [TBL] [Abstract][Full Text] [Related]
32. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357 [TBL] [Abstract][Full Text] [Related]
33. Specialized phenolic compounds in seeds: structures, functions, and regulations. Corso M; Perreau F; Mouille G; Lepiniec L Plant Sci; 2020 Jul; 296():110471. PubMed ID: 32540001 [TBL] [Abstract][Full Text] [Related]
34. phyB and HY5 are Involved in the Blue Light-Mediated Alleviation of Dormancy of Stawska M; Oracz K Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771191 [TBL] [Abstract][Full Text] [Related]
35. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Wu P; Liu A; Li L Mol Genet Genomics; 2021 Jul; 296(4):953-970. PubMed ID: 34009475 [TBL] [Abstract][Full Text] [Related]
36. Metabolic characteristics of self-pollinated wheat seed under red and blue light during early development. Zhang P; Tang Y; Liu Y; Liu J; Wang Q; Wang H; Li H; Li L; Qin P Planta; 2023 Aug; 258(3):63. PubMed ID: 37543957 [TBL] [Abstract][Full Text] [Related]
37. Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in Shen S; Tang Y; Zhang C; Yin N; Mao Y; Sun F; Chen S; Hu R; Liu X; Shang G; Liu L; Lu K; Li J; Qu C Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281271 [TBL] [Abstract][Full Text] [Related]
38. Layers of regulation - Insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Golz JF; Allen PJ; Li SF; Parish RW; Jayawardana NU; Bacic A; Doblin MS Plant Sci; 2018 Jul; 272():179-192. PubMed ID: 29807590 [TBL] [Abstract][Full Text] [Related]
39. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Cavallini E; Matus JT; Finezzo L; Zenoni S; Loyola R; Guzzo F; Schlechter R; Ageorges A; Arce-Johnson P; Tornielli GB Plant Physiol; 2015 Apr; 167(4):1448-70. PubMed ID: 25659381 [TBL] [Abstract][Full Text] [Related]
40. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Albert S; Delseny M; Devic M Plant J; 1997 Feb; 11(2):289-99. PubMed ID: 9076994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]