BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16670006)

  • 1. Short-term sequence evolution and vertical inheritance of the Naegleria twin-ribozyme group I intron.
    Wikmark OG; Einvik C; De Jonckheere JF; Johansen SD
    BMC Evol Biol; 2006 May; 6():39. PubMed ID: 16670006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naegleria nucleolar introns contain two group I ribozymes with different functions in RNA splicing and processing.
    Einvik C; Decatur WA; Embley TM; Vogt VM; Johansen S
    RNA; 1997 Jul; 3(7):710-20. PubMed ID: 9214655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the Naegleria intron endonuclease is dependent on a functional group I self-cleaving ribozyme.
    Decatur WA; Johansen S; Vogt VM
    RNA; 2000 Apr; 6(4):616-27. PubMed ID: 10786852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of a new member of the lariat capping twin-ribozyme introns.
    Tang Y; Nielsen H; Masquida B; Gardner PP; Johansen SD
    Mob DNA; 2014; 5():25. PubMed ID: 25342998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes.
    Haugen P; De Jonckheere JF; Johansen S
    Eur J Biochem; 2002 Mar; 269(6):1641-9. PubMed ID: 11895434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Organization of S516 Group I Introns in Myxomycetes.
    Furulund BMN; Karlsen BO; Babiak I; Haugen P; Johansen SD
    Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role.
    Johansen S; Einvik C; Nielsen H
    Biochimie; 2002 Sep; 84(9):905-12. PubMed ID: 12458083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes.
    Haugen P; Coucheron DH; Rønning SB; Haugli K; Johansen S
    J Eukaryot Microbiol; 2003; 50(4):283-92. PubMed ID: 15132172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse splicing of a mobile twin-ribozyme group I intron into the natural small subunit rRNA insertion site.
    Birgisdottir AB; Johansen SD
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):482-4. PubMed ID: 15916547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron.
    Vader A; Nielsen H; Johansen S
    EMBO J; 1999 Feb; 18(4):1003-13. PubMed ID: 10022842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the ORF in the SSUrDNA group I intron of one Naegleria lineage.
    De Jonckheere JF; Brown S
    Nucleic Acids Res; 1994 Sep; 22(19):3925-7. PubMed ID: 7937113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site.
    Elde M; Haugen P; Willassen NP; Johansen S
    Eur J Biochem; 1999 Jan; 259(1-2):281-8. PubMed ID: 9914504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three different group I introns in the nuclear large subunit ribosomal DNA of the amoeboflagellate Naegleria.
    De Jonckheere JF; Brown S
    Nucleic Acids Res; 1998 Jan; 26(2):456-61. PubMed ID: 9421500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA.
    Birgisdottir AB; Johansen S
    Nucleic Acids Res; 2005; 33(6):2042-51. PubMed ID: 15817568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the ancestral origin of group I introns in the SSUrDNA of Naegleria spp.
    De Jonckheere JF
    J Eukaryot Microbiol; 1994; 41(5):457-63. PubMed ID: 7804245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invasion of protein coding genes by green algal ribosomal group I introns.
    McManus HA; Lewis LA; Fučíková K; Haugen P
    Mol Phylogenet Evol; 2012 Jan; 62(1):109-16. PubMed ID: 22056605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation of a group I intron into a lariat capping ribozyme.
    Meyer M; Nielsen H; Oliéric V; Roblin P; Johansen SD; Westhof E; Masquida B
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7659-64. PubMed ID: 24821772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Phylogenetic Approach to Structural Variation in Organization of Nuclear Group I Introns and Their Ribozymes.
    Furulund BMN; Karlsen BO; Babiak I; Johansen SD
    Noncoding RNA; 2021 Jul; 7(3):. PubMed ID: 34449660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements.
    Gogarten JP; Hilario E
    BMC Evol Biol; 2006 Nov; 6():94. PubMed ID: 17101053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis.
    Johansen S; Elde M; Vader A; Haugen P; Haugli K; Haugli F
    Mol Microbiol; 1997 May; 24(4):737-45. PubMed ID: 9194701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.